File size: 8,445 Bytes
0556e7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
from typing import List, Optional, Tuple, Union
from .configuration_uform_gen import VLMConfig
import torch
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from torch import nn
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.models.auto.modeling_auto import AutoModelForCausalLM, AutoModel
from transformers import AutoConfig
from transformers.utils import logging
from .vision_encoder import VisionEncoder
class ImageFeaturesPooler(nn.Module):
def __init__(self, config, text_config):
super().__init__()
self.pooler = nn.TransformerDecoderLayer(
config.image_encoder_hidden_size,
config.image_pooler_num_attn_heads,
config.image_pooler_intermediate_size,
activation=nn.functional.silu,
batch_first=True,
norm_first=True,
)
self.image_latents = nn.Parameter(
torch.randn(1, config.num_image_latents, config.image_encoder_hidden_size)
* config.initializer_range**0.5
)
self.projection = nn.Linear(config.image_encoder_hidden_size, text_config.hidden_size)
def forward(self, features):
features = self.pooler(
self.image_latents.expand(features.size(0), -1, -1), features
)
return self.projection(features)
class VLMPreTrainedModel(PreTrainedModel):
config_class = VLMConfig
base_model_prefix = "vlm"
supports_gradient_checkpointing = True
_no_split_modules = []
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
pass
def _initialize_weights(self, module):
pass
class VLMForCausalLM(VLMPreTrainedModel):
def __init__(self, config: VLMConfig):
super().__init__(config)
self.config = config
self.text_config = AutoConfig.from_pretrained(
config.text_decoder_name_or_path,
trust_remote_code=True
)
self.text_decoder = AutoModelForCausalLM.from_config(
self.text_config,
trust_remote_code=True
)
self.image_encoder = VisionEncoder(
config.image_encoder_hidden_size,
config.image_encoder_patch_size,
config.image_encoder_num_layers,
config.image_encoder_num_heads,
)
self.image_pooler = ImageFeaturesPooler(config, self.text_config)
def get_input_embeddings(self):
return self.text_decoder.get_input_embeddings()
def set_input_embeddings(self, value):
self.text_decoder.set_input_embeddings(value)
def get_images_embeddings(self, images):
features = self.image_encoder(images)
return self.image_pooler(features)
def gather_continuous_embeddings(
self,
input_ids: torch.Tensor,
word_embeddings: torch.Tensor,
image_embeddings: torch.Tensor
) -> torch.Tensor:
start_indices = (input_ids == self.config.image_token_id).nonzero()[:, 1]
embeddings = []
for sample_idx, start_idx in enumerate(start_indices.tolist()):
embeddings.append(
torch.cat(
(
word_embeddings[sample_idx, :start_idx],
image_embeddings[sample_idx],
word_embeddings[sample_idx, start_idx + 1 :],
),
dim=0,
)
)
return torch.stack(embeddings, dim=0)
def forward(
self,
input_ids: torch.LongTensor = None,
images: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[dict, Tuple, CausalLMOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is None and inputs_embeds is None:
raise ValueError("You have to specify either input_is or inputs_embeds")
if inputs_embeds is None and past_key_values is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
if images is not None:
image_embeds = self.get_images_embeddings(images)
inputs_embeds = self.gather_continuous_embeddings(
input_ids,
inputs_embeds,
image_embeds
)
if position_ids is None:
seq_length = (
inputs_embeds.shape[1]
if inputs_embeds is not None
else input_ids.shape[1]
)
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0)
outputs = self.text_decoder(
inputs_embeds=inputs_embeds,
input_ids=input_ids if past_key_values is not None else None,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
return_dict=return_dict,
)
return outputs
def prepare_inputs_for_generation(
self,
input_ids,
images=None,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
n_samples = inputs_embeds.shape[0]
else:
model_inputs = {"input_ids": input_ids}
n_samples = input_ids.shape[0]
if images is not None:
model_inputs["images"] = images
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"images": images if past_key_values is None else None,
}
)
return model_inputs
@classmethod
def from_config(cls, config, **kwargs):
return cls._from_config(config, **kwargs)
VLMConfig.register_for_auto_class()
VLMForCausalLM.register_for_auto_class("AutoModel")
|