kimihailv commited on
Commit
80e48d5
1 Parent(s): 629e47a

Upload VLMForCausalLM

Browse files
README.md ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../weights/vlm-qwen-big-uform",
3
+ "architectures": [
4
+ "VLMForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_uform_gen.VLMConfig",
8
+ "AutoModel": "modeling_uform_gen.VLMForCausalLM"
9
+ },
10
+ "image_encoder_hidden_size": 1280,
11
+ "image_encoder_name_or_path": "unum-cloud/uform-vl-english-big",
12
+ "image_encoder_num_heads": 16,
13
+ "image_encoder_num_layers": 32,
14
+ "image_encoder_patch_size": 14,
15
+ "image_encoder_pooling": "cls",
16
+ "image_pooler_intermediate_size": 3200,
17
+ "image_pooler_num_attn_heads": 16,
18
+ "image_size": 336,
19
+ "image_token_id": 151646,
20
+ "initializer_range": 0.02,
21
+ "model_type": "vlm",
22
+ "num_image_latents": 256,
23
+ "text_decoder_name_or_path": "Qwen/Qwen1.5-0.5B-Chat",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.37.2",
26
+ "use_cache": true
27
+ }
configuration_uform_gen.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from typing import List
3
+
4
+
5
+ class VLMConfig(PretrainedConfig):
6
+ model_type = "vlm"
7
+
8
+ def __init__(
9
+ self,
10
+ text_decoder_name_or_path: str = "",
11
+ image_encoder_name_or_path: str = "",
12
+ image_size: int = 336,
13
+ image_pooler_num_attn_heads: int = 16,
14
+ image_pooler_intermediate_size: int = 3200,
15
+ image_token_id: int = 151646,
16
+ image_encoder_hidden_size: int = 1280,
17
+ image_encoder_patch_size: int = 14,
18
+ image_encoder_num_layers: int = 32,
19
+ image_encoder_num_heads: int = 16,
20
+ image_encoder_pooling: str = "cls",
21
+ num_image_latents: int = 256,
22
+ initializer_range: float = 0.02,
23
+ use_cache: bool = True,
24
+ **kwargs,
25
+ ):
26
+ self.text_decoder_name_or_path = text_decoder_name_or_path
27
+ self.image_encoder_name_or_path = image_encoder_name_or_path
28
+
29
+ self.image_pooler_num_attn_heads = image_pooler_num_attn_heads
30
+ self.image_pooler_intermediate_size = image_pooler_intermediate_size
31
+ self.image_token_id = image_token_id
32
+ self.image_size = image_size
33
+ self.image_encoder_hidden_size = image_encoder_hidden_size
34
+ self.image_encoder_patch_size = image_encoder_patch_size
35
+ self.image_encoder_num_layers = image_encoder_num_layers
36
+ self.image_encoder_num_heads = image_encoder_num_heads
37
+ self.image_encoder_pooling = image_encoder_pooling
38
+ self.num_image_latents = num_image_latents
39
+
40
+ self.initializer_range = initializer_range
41
+ self.use_cache = use_cache
42
+
43
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.37.2"
4
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:745e8e2f2087905cee61b46e74b181681484d3e0d7ecbef3189e472b3fd78329
3
+ size 4975529328
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27ce47ee20f96a21f8c7ac2a1be36d838b973b5af28b2b0b0e993b86c8a35a27
3
+ size 118081792
model.safetensors.index.json ADDED
@@ -0,0 +1,901 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5093506560
4
+ },
5
+ "weight_map": {
6
+ "image_encoder.blocks.0.attn.key.bias": "model-00001-of-00002.safetensors",
7
+ "image_encoder.blocks.0.attn.key.weight": "model-00001-of-00002.safetensors",
8
+ "image_encoder.blocks.0.attn.out.bias": "model-00001-of-00002.safetensors",
9
+ "image_encoder.blocks.0.attn.out.weight": "model-00001-of-00002.safetensors",
10
+ "image_encoder.blocks.0.attn.query.bias": "model-00001-of-00002.safetensors",
11
+ "image_encoder.blocks.0.attn.query.weight": "model-00001-of-00002.safetensors",
12
+ "image_encoder.blocks.0.attn.value.bias": "model-00001-of-00002.safetensors",
13
+ "image_encoder.blocks.0.attn.value.weight": "model-00001-of-00002.safetensors",
14
+ "image_encoder.blocks.0.ls1.weight": "model-00001-of-00002.safetensors",
15
+ "image_encoder.blocks.0.ls2.weight": "model-00001-of-00002.safetensors",
16
+ "image_encoder.blocks.0.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
17
+ "image_encoder.blocks.0.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
18
+ "image_encoder.blocks.0.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
19
+ "image_encoder.blocks.0.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
20
+ "image_encoder.blocks.0.norm1.bias": "model-00001-of-00002.safetensors",
21
+ "image_encoder.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
22
+ "image_encoder.blocks.0.norm2.bias": "model-00001-of-00002.safetensors",
23
+ "image_encoder.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
24
+ "image_encoder.blocks.1.attn.key.bias": "model-00001-of-00002.safetensors",
25
+ "image_encoder.blocks.1.attn.key.weight": "model-00001-of-00002.safetensors",
26
+ "image_encoder.blocks.1.attn.out.bias": "model-00001-of-00002.safetensors",
27
+ "image_encoder.blocks.1.attn.out.weight": "model-00001-of-00002.safetensors",
28
+ "image_encoder.blocks.1.attn.query.bias": "model-00001-of-00002.safetensors",
29
+ "image_encoder.blocks.1.attn.query.weight": "model-00001-of-00002.safetensors",
30
+ "image_encoder.blocks.1.attn.value.bias": "model-00001-of-00002.safetensors",
31
+ "image_encoder.blocks.1.attn.value.weight": "model-00001-of-00002.safetensors",
32
+ "image_encoder.blocks.1.ls1.weight": "model-00001-of-00002.safetensors",
33
+ "image_encoder.blocks.1.ls2.weight": "model-00001-of-00002.safetensors",
34
+ "image_encoder.blocks.1.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
35
+ "image_encoder.blocks.1.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
36
+ "image_encoder.blocks.1.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
37
+ "image_encoder.blocks.1.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
38
+ "image_encoder.blocks.1.norm1.bias": "model-00001-of-00002.safetensors",
39
+ "image_encoder.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
40
+ "image_encoder.blocks.1.norm2.bias": "model-00001-of-00002.safetensors",
41
+ "image_encoder.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
42
+ "image_encoder.blocks.10.attn.key.bias": "model-00001-of-00002.safetensors",
43
+ "image_encoder.blocks.10.attn.key.weight": "model-00001-of-00002.safetensors",
44
+ "image_encoder.blocks.10.attn.out.bias": "model-00001-of-00002.safetensors",
45
+ "image_encoder.blocks.10.attn.out.weight": "model-00001-of-00002.safetensors",
46
+ "image_encoder.blocks.10.attn.query.bias": "model-00001-of-00002.safetensors",
47
+ "image_encoder.blocks.10.attn.query.weight": "model-00001-of-00002.safetensors",
48
+ "image_encoder.blocks.10.attn.value.bias": "model-00001-of-00002.safetensors",
49
+ "image_encoder.blocks.10.attn.value.weight": "model-00001-of-00002.safetensors",
50
+ "image_encoder.blocks.10.ls1.weight": "model-00001-of-00002.safetensors",
51
+ "image_encoder.blocks.10.ls2.weight": "model-00001-of-00002.safetensors",
52
+ "image_encoder.blocks.10.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
53
+ "image_encoder.blocks.10.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
54
+ "image_encoder.blocks.10.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
55
+ "image_encoder.blocks.10.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
56
+ "image_encoder.blocks.10.norm1.bias": "model-00001-of-00002.safetensors",
57
+ "image_encoder.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
58
+ "image_encoder.blocks.10.norm2.bias": "model-00001-of-00002.safetensors",
59
+ "image_encoder.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
60
+ "image_encoder.blocks.11.attn.key.bias": "model-00001-of-00002.safetensors",
61
+ "image_encoder.blocks.11.attn.key.weight": "model-00001-of-00002.safetensors",
62
+ "image_encoder.blocks.11.attn.out.bias": "model-00001-of-00002.safetensors",
63
+ "image_encoder.blocks.11.attn.out.weight": "model-00001-of-00002.safetensors",
64
+ "image_encoder.blocks.11.attn.query.bias": "model-00001-of-00002.safetensors",
65
+ "image_encoder.blocks.11.attn.query.weight": "model-00001-of-00002.safetensors",
66
+ "image_encoder.blocks.11.attn.value.bias": "model-00001-of-00002.safetensors",
67
+ "image_encoder.blocks.11.attn.value.weight": "model-00001-of-00002.safetensors",
68
+ "image_encoder.blocks.11.ls1.weight": "model-00001-of-00002.safetensors",
69
+ "image_encoder.blocks.11.ls2.weight": "model-00001-of-00002.safetensors",
70
+ "image_encoder.blocks.11.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
71
+ "image_encoder.blocks.11.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
72
+ "image_encoder.blocks.11.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
73
+ "image_encoder.blocks.11.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
74
+ "image_encoder.blocks.11.norm1.bias": "model-00001-of-00002.safetensors",
75
+ "image_encoder.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
76
+ "image_encoder.blocks.11.norm2.bias": "model-00001-of-00002.safetensors",
77
+ "image_encoder.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
78
+ "image_encoder.blocks.12.attn.key.bias": "model-00001-of-00002.safetensors",
79
+ "image_encoder.blocks.12.attn.key.weight": "model-00001-of-00002.safetensors",
80
+ "image_encoder.blocks.12.attn.out.bias": "model-00001-of-00002.safetensors",
81
+ "image_encoder.blocks.12.attn.out.weight": "model-00001-of-00002.safetensors",
82
+ "image_encoder.blocks.12.attn.query.bias": "model-00001-of-00002.safetensors",
83
+ "image_encoder.blocks.12.attn.query.weight": "model-00001-of-00002.safetensors",
84
+ "image_encoder.blocks.12.attn.value.bias": "model-00001-of-00002.safetensors",
85
+ "image_encoder.blocks.12.attn.value.weight": "model-00001-of-00002.safetensors",
86
+ "image_encoder.blocks.12.ls1.weight": "model-00001-of-00002.safetensors",
87
+ "image_encoder.blocks.12.ls2.weight": "model-00001-of-00002.safetensors",
88
+ "image_encoder.blocks.12.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
89
+ "image_encoder.blocks.12.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
90
+ "image_encoder.blocks.12.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
91
+ "image_encoder.blocks.12.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
92
+ "image_encoder.blocks.12.norm1.bias": "model-00001-of-00002.safetensors",
93
+ "image_encoder.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
94
+ "image_encoder.blocks.12.norm2.bias": "model-00001-of-00002.safetensors",
95
+ "image_encoder.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
96
+ "image_encoder.blocks.13.attn.key.bias": "model-00001-of-00002.safetensors",
97
+ "image_encoder.blocks.13.attn.key.weight": "model-00001-of-00002.safetensors",
98
+ "image_encoder.blocks.13.attn.out.bias": "model-00001-of-00002.safetensors",
99
+ "image_encoder.blocks.13.attn.out.weight": "model-00001-of-00002.safetensors",
100
+ "image_encoder.blocks.13.attn.query.bias": "model-00001-of-00002.safetensors",
101
+ "image_encoder.blocks.13.attn.query.weight": "model-00001-of-00002.safetensors",
102
+ "image_encoder.blocks.13.attn.value.bias": "model-00001-of-00002.safetensors",
103
+ "image_encoder.blocks.13.attn.value.weight": "model-00001-of-00002.safetensors",
104
+ "image_encoder.blocks.13.ls1.weight": "model-00001-of-00002.safetensors",
105
+ "image_encoder.blocks.13.ls2.weight": "model-00001-of-00002.safetensors",
106
+ "image_encoder.blocks.13.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
107
+ "image_encoder.blocks.13.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
108
+ "image_encoder.blocks.13.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
109
+ "image_encoder.blocks.13.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
110
+ "image_encoder.blocks.13.norm1.bias": "model-00001-of-00002.safetensors",
111
+ "image_encoder.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
112
+ "image_encoder.blocks.13.norm2.bias": "model-00001-of-00002.safetensors",
113
+ "image_encoder.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
114
+ "image_encoder.blocks.14.attn.key.bias": "model-00001-of-00002.safetensors",
115
+ "image_encoder.blocks.14.attn.key.weight": "model-00001-of-00002.safetensors",
116
+ "image_encoder.blocks.14.attn.out.bias": "model-00001-of-00002.safetensors",
117
+ "image_encoder.blocks.14.attn.out.weight": "model-00001-of-00002.safetensors",
118
+ "image_encoder.blocks.14.attn.query.bias": "model-00001-of-00002.safetensors",
119
+ "image_encoder.blocks.14.attn.query.weight": "model-00001-of-00002.safetensors",
120
+ "image_encoder.blocks.14.attn.value.bias": "model-00001-of-00002.safetensors",
121
+ "image_encoder.blocks.14.attn.value.weight": "model-00001-of-00002.safetensors",
122
+ "image_encoder.blocks.14.ls1.weight": "model-00001-of-00002.safetensors",
123
+ "image_encoder.blocks.14.ls2.weight": "model-00001-of-00002.safetensors",
124
+ "image_encoder.blocks.14.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
125
+ "image_encoder.blocks.14.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
126
+ "image_encoder.blocks.14.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
127
+ "image_encoder.blocks.14.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
128
+ "image_encoder.blocks.14.norm1.bias": "model-00001-of-00002.safetensors",
129
+ "image_encoder.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
130
+ "image_encoder.blocks.14.norm2.bias": "model-00001-of-00002.safetensors",
131
+ "image_encoder.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
132
+ "image_encoder.blocks.15.attn.key.bias": "model-00001-of-00002.safetensors",
133
+ "image_encoder.blocks.15.attn.key.weight": "model-00001-of-00002.safetensors",
134
+ "image_encoder.blocks.15.attn.out.bias": "model-00001-of-00002.safetensors",
135
+ "image_encoder.blocks.15.attn.out.weight": "model-00001-of-00002.safetensors",
136
+ "image_encoder.blocks.15.attn.query.bias": "model-00001-of-00002.safetensors",
137
+ "image_encoder.blocks.15.attn.query.weight": "model-00001-of-00002.safetensors",
138
+ "image_encoder.blocks.15.attn.value.bias": "model-00001-of-00002.safetensors",
139
+ "image_encoder.blocks.15.attn.value.weight": "model-00001-of-00002.safetensors",
140
+ "image_encoder.blocks.15.ls1.weight": "model-00001-of-00002.safetensors",
141
+ "image_encoder.blocks.15.ls2.weight": "model-00001-of-00002.safetensors",
142
+ "image_encoder.blocks.15.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
143
+ "image_encoder.blocks.15.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
144
+ "image_encoder.blocks.15.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
145
+ "image_encoder.blocks.15.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
146
+ "image_encoder.blocks.15.norm1.bias": "model-00001-of-00002.safetensors",
147
+ "image_encoder.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
148
+ "image_encoder.blocks.15.norm2.bias": "model-00001-of-00002.safetensors",
149
+ "image_encoder.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
150
+ "image_encoder.blocks.16.attn.key.bias": "model-00001-of-00002.safetensors",
151
+ "image_encoder.blocks.16.attn.key.weight": "model-00001-of-00002.safetensors",
152
+ "image_encoder.blocks.16.attn.out.bias": "model-00001-of-00002.safetensors",
153
+ "image_encoder.blocks.16.attn.out.weight": "model-00001-of-00002.safetensors",
154
+ "image_encoder.blocks.16.attn.query.bias": "model-00001-of-00002.safetensors",
155
+ "image_encoder.blocks.16.attn.query.weight": "model-00001-of-00002.safetensors",
156
+ "image_encoder.blocks.16.attn.value.bias": "model-00001-of-00002.safetensors",
157
+ "image_encoder.blocks.16.attn.value.weight": "model-00001-of-00002.safetensors",
158
+ "image_encoder.blocks.16.ls1.weight": "model-00001-of-00002.safetensors",
159
+ "image_encoder.blocks.16.ls2.weight": "model-00001-of-00002.safetensors",
160
+ "image_encoder.blocks.16.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
161
+ "image_encoder.blocks.16.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
162
+ "image_encoder.blocks.16.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
163
+ "image_encoder.blocks.16.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
164
+ "image_encoder.blocks.16.norm1.bias": "model-00001-of-00002.safetensors",
165
+ "image_encoder.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
166
+ "image_encoder.blocks.16.norm2.bias": "model-00001-of-00002.safetensors",
167
+ "image_encoder.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
168
+ "image_encoder.blocks.17.attn.key.bias": "model-00001-of-00002.safetensors",
169
+ "image_encoder.blocks.17.attn.key.weight": "model-00001-of-00002.safetensors",
170
+ "image_encoder.blocks.17.attn.out.bias": "model-00001-of-00002.safetensors",
171
+ "image_encoder.blocks.17.attn.out.weight": "model-00001-of-00002.safetensors",
172
+ "image_encoder.blocks.17.attn.query.bias": "model-00001-of-00002.safetensors",
173
+ "image_encoder.blocks.17.attn.query.weight": "model-00001-of-00002.safetensors",
174
+ "image_encoder.blocks.17.attn.value.bias": "model-00001-of-00002.safetensors",
175
+ "image_encoder.blocks.17.attn.value.weight": "model-00001-of-00002.safetensors",
176
+ "image_encoder.blocks.17.ls1.weight": "model-00001-of-00002.safetensors",
177
+ "image_encoder.blocks.17.ls2.weight": "model-00001-of-00002.safetensors",
178
+ "image_encoder.blocks.17.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
179
+ "image_encoder.blocks.17.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
180
+ "image_encoder.blocks.17.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
181
+ "image_encoder.blocks.17.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
182
+ "image_encoder.blocks.17.norm1.bias": "model-00001-of-00002.safetensors",
183
+ "image_encoder.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
184
+ "image_encoder.blocks.17.norm2.bias": "model-00001-of-00002.safetensors",
185
+ "image_encoder.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
186
+ "image_encoder.blocks.18.attn.key.bias": "model-00001-of-00002.safetensors",
187
+ "image_encoder.blocks.18.attn.key.weight": "model-00001-of-00002.safetensors",
188
+ "image_encoder.blocks.18.attn.out.bias": "model-00001-of-00002.safetensors",
189
+ "image_encoder.blocks.18.attn.out.weight": "model-00001-of-00002.safetensors",
190
+ "image_encoder.blocks.18.attn.query.bias": "model-00001-of-00002.safetensors",
191
+ "image_encoder.blocks.18.attn.query.weight": "model-00001-of-00002.safetensors",
192
+ "image_encoder.blocks.18.attn.value.bias": "model-00001-of-00002.safetensors",
193
+ "image_encoder.blocks.18.attn.value.weight": "model-00001-of-00002.safetensors",
194
+ "image_encoder.blocks.18.ls1.weight": "model-00001-of-00002.safetensors",
195
+ "image_encoder.blocks.18.ls2.weight": "model-00001-of-00002.safetensors",
196
+ "image_encoder.blocks.18.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
197
+ "image_encoder.blocks.18.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
198
+ "image_encoder.blocks.18.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
199
+ "image_encoder.blocks.18.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
200
+ "image_encoder.blocks.18.norm1.bias": "model-00001-of-00002.safetensors",
201
+ "image_encoder.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
202
+ "image_encoder.blocks.18.norm2.bias": "model-00001-of-00002.safetensors",
203
+ "image_encoder.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
204
+ "image_encoder.blocks.19.attn.key.bias": "model-00001-of-00002.safetensors",
205
+ "image_encoder.blocks.19.attn.key.weight": "model-00001-of-00002.safetensors",
206
+ "image_encoder.blocks.19.attn.out.bias": "model-00001-of-00002.safetensors",
207
+ "image_encoder.blocks.19.attn.out.weight": "model-00001-of-00002.safetensors",
208
+ "image_encoder.blocks.19.attn.query.bias": "model-00001-of-00002.safetensors",
209
+ "image_encoder.blocks.19.attn.query.weight": "model-00001-of-00002.safetensors",
210
+ "image_encoder.blocks.19.attn.value.bias": "model-00001-of-00002.safetensors",
211
+ "image_encoder.blocks.19.attn.value.weight": "model-00001-of-00002.safetensors",
212
+ "image_encoder.blocks.19.ls1.weight": "model-00001-of-00002.safetensors",
213
+ "image_encoder.blocks.19.ls2.weight": "model-00001-of-00002.safetensors",
214
+ "image_encoder.blocks.19.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
215
+ "image_encoder.blocks.19.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
216
+ "image_encoder.blocks.19.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
217
+ "image_encoder.blocks.19.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
218
+ "image_encoder.blocks.19.norm1.bias": "model-00001-of-00002.safetensors",
219
+ "image_encoder.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
220
+ "image_encoder.blocks.19.norm2.bias": "model-00001-of-00002.safetensors",
221
+ "image_encoder.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
222
+ "image_encoder.blocks.2.attn.key.bias": "model-00001-of-00002.safetensors",
223
+ "image_encoder.blocks.2.attn.key.weight": "model-00001-of-00002.safetensors",
224
+ "image_encoder.blocks.2.attn.out.bias": "model-00001-of-00002.safetensors",
225
+ "image_encoder.blocks.2.attn.out.weight": "model-00001-of-00002.safetensors",
226
+ "image_encoder.blocks.2.attn.query.bias": "model-00001-of-00002.safetensors",
227
+ "image_encoder.blocks.2.attn.query.weight": "model-00001-of-00002.safetensors",
228
+ "image_encoder.blocks.2.attn.value.bias": "model-00001-of-00002.safetensors",
229
+ "image_encoder.blocks.2.attn.value.weight": "model-00001-of-00002.safetensors",
230
+ "image_encoder.blocks.2.ls1.weight": "model-00001-of-00002.safetensors",
231
+ "image_encoder.blocks.2.ls2.weight": "model-00001-of-00002.safetensors",
232
+ "image_encoder.blocks.2.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
233
+ "image_encoder.blocks.2.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
234
+ "image_encoder.blocks.2.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
235
+ "image_encoder.blocks.2.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
236
+ "image_encoder.blocks.2.norm1.bias": "model-00001-of-00002.safetensors",
237
+ "image_encoder.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
238
+ "image_encoder.blocks.2.norm2.bias": "model-00001-of-00002.safetensors",
239
+ "image_encoder.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
240
+ "image_encoder.blocks.20.attn.key.bias": "model-00001-of-00002.safetensors",
241
+ "image_encoder.blocks.20.attn.key.weight": "model-00001-of-00002.safetensors",
242
+ "image_encoder.blocks.20.attn.out.bias": "model-00001-of-00002.safetensors",
243
+ "image_encoder.blocks.20.attn.out.weight": "model-00001-of-00002.safetensors",
244
+ "image_encoder.blocks.20.attn.query.bias": "model-00001-of-00002.safetensors",
245
+ "image_encoder.blocks.20.attn.query.weight": "model-00001-of-00002.safetensors",
246
+ "image_encoder.blocks.20.attn.value.bias": "model-00001-of-00002.safetensors",
247
+ "image_encoder.blocks.20.attn.value.weight": "model-00001-of-00002.safetensors",
248
+ "image_encoder.blocks.20.ls1.weight": "model-00001-of-00002.safetensors",
249
+ "image_encoder.blocks.20.ls2.weight": "model-00001-of-00002.safetensors",
250
+ "image_encoder.blocks.20.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
251
+ "image_encoder.blocks.20.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
252
+ "image_encoder.blocks.20.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
253
+ "image_encoder.blocks.20.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
254
+ "image_encoder.blocks.20.norm1.bias": "model-00001-of-00002.safetensors",
255
+ "image_encoder.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
256
+ "image_encoder.blocks.20.norm2.bias": "model-00001-of-00002.safetensors",
257
+ "image_encoder.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
258
+ "image_encoder.blocks.21.attn.key.bias": "model-00001-of-00002.safetensors",
259
+ "image_encoder.blocks.21.attn.key.weight": "model-00001-of-00002.safetensors",
260
+ "image_encoder.blocks.21.attn.out.bias": "model-00001-of-00002.safetensors",
261
+ "image_encoder.blocks.21.attn.out.weight": "model-00001-of-00002.safetensors",
262
+ "image_encoder.blocks.21.attn.query.bias": "model-00001-of-00002.safetensors",
263
+ "image_encoder.blocks.21.attn.query.weight": "model-00001-of-00002.safetensors",
264
+ "image_encoder.blocks.21.attn.value.bias": "model-00001-of-00002.safetensors",
265
+ "image_encoder.blocks.21.attn.value.weight": "model-00001-of-00002.safetensors",
266
+ "image_encoder.blocks.21.ls1.weight": "model-00001-of-00002.safetensors",
267
+ "image_encoder.blocks.21.ls2.weight": "model-00001-of-00002.safetensors",
268
+ "image_encoder.blocks.21.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
269
+ "image_encoder.blocks.21.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
270
+ "image_encoder.blocks.21.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
271
+ "image_encoder.blocks.21.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
272
+ "image_encoder.blocks.21.norm1.bias": "model-00001-of-00002.safetensors",
273
+ "image_encoder.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
274
+ "image_encoder.blocks.21.norm2.bias": "model-00001-of-00002.safetensors",
275
+ "image_encoder.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
276
+ "image_encoder.blocks.22.attn.key.bias": "model-00001-of-00002.safetensors",
277
+ "image_encoder.blocks.22.attn.key.weight": "model-00001-of-00002.safetensors",
278
+ "image_encoder.blocks.22.attn.out.bias": "model-00001-of-00002.safetensors",
279
+ "image_encoder.blocks.22.attn.out.weight": "model-00001-of-00002.safetensors",
280
+ "image_encoder.blocks.22.attn.query.bias": "model-00001-of-00002.safetensors",
281
+ "image_encoder.blocks.22.attn.query.weight": "model-00001-of-00002.safetensors",
282
+ "image_encoder.blocks.22.attn.value.bias": "model-00001-of-00002.safetensors",
283
+ "image_encoder.blocks.22.attn.value.weight": "model-00001-of-00002.safetensors",
284
+ "image_encoder.blocks.22.ls1.weight": "model-00001-of-00002.safetensors",
285
+ "image_encoder.blocks.22.ls2.weight": "model-00001-of-00002.safetensors",
286
+ "image_encoder.blocks.22.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
287
+ "image_encoder.blocks.22.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
288
+ "image_encoder.blocks.22.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
289
+ "image_encoder.blocks.22.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
290
+ "image_encoder.blocks.22.norm1.bias": "model-00001-of-00002.safetensors",
291
+ "image_encoder.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
292
+ "image_encoder.blocks.22.norm2.bias": "model-00001-of-00002.safetensors",
293
+ "image_encoder.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
294
+ "image_encoder.blocks.23.attn.key.bias": "model-00001-of-00002.safetensors",
295
+ "image_encoder.blocks.23.attn.key.weight": "model-00001-of-00002.safetensors",
296
+ "image_encoder.blocks.23.attn.out.bias": "model-00001-of-00002.safetensors",
297
+ "image_encoder.blocks.23.attn.out.weight": "model-00001-of-00002.safetensors",
298
+ "image_encoder.blocks.23.attn.query.bias": "model-00001-of-00002.safetensors",
299
+ "image_encoder.blocks.23.attn.query.weight": "model-00001-of-00002.safetensors",
300
+ "image_encoder.blocks.23.attn.value.bias": "model-00001-of-00002.safetensors",
301
+ "image_encoder.blocks.23.attn.value.weight": "model-00001-of-00002.safetensors",
302
+ "image_encoder.blocks.23.ls1.weight": "model-00001-of-00002.safetensors",
303
+ "image_encoder.blocks.23.ls2.weight": "model-00001-of-00002.safetensors",
304
+ "image_encoder.blocks.23.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
305
+ "image_encoder.blocks.23.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
306
+ "image_encoder.blocks.23.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
307
+ "image_encoder.blocks.23.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
308
+ "image_encoder.blocks.23.norm1.bias": "model-00001-of-00002.safetensors",
309
+ "image_encoder.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
310
+ "image_encoder.blocks.23.norm2.bias": "model-00001-of-00002.safetensors",
311
+ "image_encoder.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
312
+ "image_encoder.blocks.24.attn.key.bias": "model-00001-of-00002.safetensors",
313
+ "image_encoder.blocks.24.attn.key.weight": "model-00001-of-00002.safetensors",
314
+ "image_encoder.blocks.24.attn.out.bias": "model-00001-of-00002.safetensors",
315
+ "image_encoder.blocks.24.attn.out.weight": "model-00001-of-00002.safetensors",
316
+ "image_encoder.blocks.24.attn.query.bias": "model-00001-of-00002.safetensors",
317
+ "image_encoder.blocks.24.attn.query.weight": "model-00001-of-00002.safetensors",
318
+ "image_encoder.blocks.24.attn.value.bias": "model-00001-of-00002.safetensors",
319
+ "image_encoder.blocks.24.attn.value.weight": "model-00001-of-00002.safetensors",
320
+ "image_encoder.blocks.24.ls1.weight": "model-00001-of-00002.safetensors",
321
+ "image_encoder.blocks.24.ls2.weight": "model-00001-of-00002.safetensors",
322
+ "image_encoder.blocks.24.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
323
+ "image_encoder.blocks.24.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
324
+ "image_encoder.blocks.24.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
325
+ "image_encoder.blocks.24.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
326
+ "image_encoder.blocks.24.norm1.bias": "model-00001-of-00002.safetensors",
327
+ "image_encoder.blocks.24.norm1.weight": "model-00001-of-00002.safetensors",
328
+ "image_encoder.blocks.24.norm2.bias": "model-00001-of-00002.safetensors",
329
+ "image_encoder.blocks.24.norm2.weight": "model-00001-of-00002.safetensors",
330
+ "image_encoder.blocks.25.attn.key.bias": "model-00001-of-00002.safetensors",
331
+ "image_encoder.blocks.25.attn.key.weight": "model-00001-of-00002.safetensors",
332
+ "image_encoder.blocks.25.attn.out.bias": "model-00001-of-00002.safetensors",
333
+ "image_encoder.blocks.25.attn.out.weight": "model-00001-of-00002.safetensors",
334
+ "image_encoder.blocks.25.attn.query.bias": "model-00001-of-00002.safetensors",
335
+ "image_encoder.blocks.25.attn.query.weight": "model-00001-of-00002.safetensors",
336
+ "image_encoder.blocks.25.attn.value.bias": "model-00001-of-00002.safetensors",
337
+ "image_encoder.blocks.25.attn.value.weight": "model-00001-of-00002.safetensors",
338
+ "image_encoder.blocks.25.ls1.weight": "model-00001-of-00002.safetensors",
339
+ "image_encoder.blocks.25.ls2.weight": "model-00001-of-00002.safetensors",
340
+ "image_encoder.blocks.25.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
341
+ "image_encoder.blocks.25.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
342
+ "image_encoder.blocks.25.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
343
+ "image_encoder.blocks.25.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
344
+ "image_encoder.blocks.25.norm1.bias": "model-00001-of-00002.safetensors",
345
+ "image_encoder.blocks.25.norm1.weight": "model-00001-of-00002.safetensors",
346
+ "image_encoder.blocks.25.norm2.bias": "model-00001-of-00002.safetensors",
347
+ "image_encoder.blocks.25.norm2.weight": "model-00001-of-00002.safetensors",
348
+ "image_encoder.blocks.26.attn.key.bias": "model-00001-of-00002.safetensors",
349
+ "image_encoder.blocks.26.attn.key.weight": "model-00001-of-00002.safetensors",
350
+ "image_encoder.blocks.26.attn.out.bias": "model-00001-of-00002.safetensors",
351
+ "image_encoder.blocks.26.attn.out.weight": "model-00001-of-00002.safetensors",
352
+ "image_encoder.blocks.26.attn.query.bias": "model-00001-of-00002.safetensors",
353
+ "image_encoder.blocks.26.attn.query.weight": "model-00001-of-00002.safetensors",
354
+ "image_encoder.blocks.26.attn.value.bias": "model-00001-of-00002.safetensors",
355
+ "image_encoder.blocks.26.attn.value.weight": "model-00001-of-00002.safetensors",
356
+ "image_encoder.blocks.26.ls1.weight": "model-00001-of-00002.safetensors",
357
+ "image_encoder.blocks.26.ls2.weight": "model-00001-of-00002.safetensors",
358
+ "image_encoder.blocks.26.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
359
+ "image_encoder.blocks.26.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
360
+ "image_encoder.blocks.26.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
361
+ "image_encoder.blocks.26.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
362
+ "image_encoder.blocks.26.norm1.bias": "model-00001-of-00002.safetensors",
363
+ "image_encoder.blocks.26.norm1.weight": "model-00001-of-00002.safetensors",
364
+ "image_encoder.blocks.26.norm2.bias": "model-00001-of-00002.safetensors",
365
+ "image_encoder.blocks.26.norm2.weight": "model-00001-of-00002.safetensors",
366
+ "image_encoder.blocks.27.attn.key.bias": "model-00001-of-00002.safetensors",
367
+ "image_encoder.blocks.27.attn.key.weight": "model-00001-of-00002.safetensors",
368
+ "image_encoder.blocks.27.attn.out.bias": "model-00001-of-00002.safetensors",
369
+ "image_encoder.blocks.27.attn.out.weight": "model-00001-of-00002.safetensors",
370
+ "image_encoder.blocks.27.attn.query.bias": "model-00001-of-00002.safetensors",
371
+ "image_encoder.blocks.27.attn.query.weight": "model-00001-of-00002.safetensors",
372
+ "image_encoder.blocks.27.attn.value.bias": "model-00001-of-00002.safetensors",
373
+ "image_encoder.blocks.27.attn.value.weight": "model-00001-of-00002.safetensors",
374
+ "image_encoder.blocks.27.ls1.weight": "model-00001-of-00002.safetensors",
375
+ "image_encoder.blocks.27.ls2.weight": "model-00001-of-00002.safetensors",
376
+ "image_encoder.blocks.27.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
377
+ "image_encoder.blocks.27.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
378
+ "image_encoder.blocks.27.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
379
+ "image_encoder.blocks.27.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
380
+ "image_encoder.blocks.27.norm1.bias": "model-00001-of-00002.safetensors",
381
+ "image_encoder.blocks.27.norm1.weight": "model-00001-of-00002.safetensors",
382
+ "image_encoder.blocks.27.norm2.bias": "model-00001-of-00002.safetensors",
383
+ "image_encoder.blocks.27.norm2.weight": "model-00001-of-00002.safetensors",
384
+ "image_encoder.blocks.28.attn.key.bias": "model-00001-of-00002.safetensors",
385
+ "image_encoder.blocks.28.attn.key.weight": "model-00001-of-00002.safetensors",
386
+ "image_encoder.blocks.28.attn.out.bias": "model-00001-of-00002.safetensors",
387
+ "image_encoder.blocks.28.attn.out.weight": "model-00001-of-00002.safetensors",
388
+ "image_encoder.blocks.28.attn.query.bias": "model-00001-of-00002.safetensors",
389
+ "image_encoder.blocks.28.attn.query.weight": "model-00001-of-00002.safetensors",
390
+ "image_encoder.blocks.28.attn.value.bias": "model-00001-of-00002.safetensors",
391
+ "image_encoder.blocks.28.attn.value.weight": "model-00001-of-00002.safetensors",
392
+ "image_encoder.blocks.28.ls1.weight": "model-00001-of-00002.safetensors",
393
+ "image_encoder.blocks.28.ls2.weight": "model-00001-of-00002.safetensors",
394
+ "image_encoder.blocks.28.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
395
+ "image_encoder.blocks.28.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
396
+ "image_encoder.blocks.28.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
397
+ "image_encoder.blocks.28.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
398
+ "image_encoder.blocks.28.norm1.bias": "model-00001-of-00002.safetensors",
399
+ "image_encoder.blocks.28.norm1.weight": "model-00001-of-00002.safetensors",
400
+ "image_encoder.blocks.28.norm2.bias": "model-00001-of-00002.safetensors",
401
+ "image_encoder.blocks.28.norm2.weight": "model-00001-of-00002.safetensors",
402
+ "image_encoder.blocks.29.attn.key.bias": "model-00001-of-00002.safetensors",
403
+ "image_encoder.blocks.29.attn.key.weight": "model-00001-of-00002.safetensors",
404
+ "image_encoder.blocks.29.attn.out.bias": "model-00001-of-00002.safetensors",
405
+ "image_encoder.blocks.29.attn.out.weight": "model-00001-of-00002.safetensors",
406
+ "image_encoder.blocks.29.attn.query.bias": "model-00001-of-00002.safetensors",
407
+ "image_encoder.blocks.29.attn.query.weight": "model-00001-of-00002.safetensors",
408
+ "image_encoder.blocks.29.attn.value.bias": "model-00001-of-00002.safetensors",
409
+ "image_encoder.blocks.29.attn.value.weight": "model-00001-of-00002.safetensors",
410
+ "image_encoder.blocks.29.ls1.weight": "model-00001-of-00002.safetensors",
411
+ "image_encoder.blocks.29.ls2.weight": "model-00001-of-00002.safetensors",
412
+ "image_encoder.blocks.29.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
413
+ "image_encoder.blocks.29.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
414
+ "image_encoder.blocks.29.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
415
+ "image_encoder.blocks.29.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
416
+ "image_encoder.blocks.29.norm1.bias": "model-00001-of-00002.safetensors",
417
+ "image_encoder.blocks.29.norm1.weight": "model-00001-of-00002.safetensors",
418
+ "image_encoder.blocks.29.norm2.bias": "model-00001-of-00002.safetensors",
419
+ "image_encoder.blocks.29.norm2.weight": "model-00001-of-00002.safetensors",
420
+ "image_encoder.blocks.3.attn.key.bias": "model-00001-of-00002.safetensors",
421
+ "image_encoder.blocks.3.attn.key.weight": "model-00001-of-00002.safetensors",
422
+ "image_encoder.blocks.3.attn.out.bias": "model-00001-of-00002.safetensors",
423
+ "image_encoder.blocks.3.attn.out.weight": "model-00001-of-00002.safetensors",
424
+ "image_encoder.blocks.3.attn.query.bias": "model-00001-of-00002.safetensors",
425
+ "image_encoder.blocks.3.attn.query.weight": "model-00001-of-00002.safetensors",
426
+ "image_encoder.blocks.3.attn.value.bias": "model-00001-of-00002.safetensors",
427
+ "image_encoder.blocks.3.attn.value.weight": "model-00001-of-00002.safetensors",
428
+ "image_encoder.blocks.3.ls1.weight": "model-00001-of-00002.safetensors",
429
+ "image_encoder.blocks.3.ls2.weight": "model-00001-of-00002.safetensors",
430
+ "image_encoder.blocks.3.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
431
+ "image_encoder.blocks.3.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
432
+ "image_encoder.blocks.3.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
433
+ "image_encoder.blocks.3.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
434
+ "image_encoder.blocks.3.norm1.bias": "model-00001-of-00002.safetensors",
435
+ "image_encoder.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
436
+ "image_encoder.blocks.3.norm2.bias": "model-00001-of-00002.safetensors",
437
+ "image_encoder.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
438
+ "image_encoder.blocks.30.attn.key.bias": "model-00001-of-00002.safetensors",
439
+ "image_encoder.blocks.30.attn.key.weight": "model-00001-of-00002.safetensors",
440
+ "image_encoder.blocks.30.attn.out.bias": "model-00001-of-00002.safetensors",
441
+ "image_encoder.blocks.30.attn.out.weight": "model-00001-of-00002.safetensors",
442
+ "image_encoder.blocks.30.attn.query.bias": "model-00001-of-00002.safetensors",
443
+ "image_encoder.blocks.30.attn.query.weight": "model-00001-of-00002.safetensors",
444
+ "image_encoder.blocks.30.attn.value.bias": "model-00001-of-00002.safetensors",
445
+ "image_encoder.blocks.30.attn.value.weight": "model-00001-of-00002.safetensors",
446
+ "image_encoder.blocks.30.ls1.weight": "model-00001-of-00002.safetensors",
447
+ "image_encoder.blocks.30.ls2.weight": "model-00001-of-00002.safetensors",
448
+ "image_encoder.blocks.30.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
449
+ "image_encoder.blocks.30.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
450
+ "image_encoder.blocks.30.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
451
+ "image_encoder.blocks.30.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
452
+ "image_encoder.blocks.30.norm1.bias": "model-00001-of-00002.safetensors",
453
+ "image_encoder.blocks.30.norm1.weight": "model-00001-of-00002.safetensors",
454
+ "image_encoder.blocks.30.norm2.bias": "model-00001-of-00002.safetensors",
455
+ "image_encoder.blocks.30.norm2.weight": "model-00001-of-00002.safetensors",
456
+ "image_encoder.blocks.31.attn.key.bias": "model-00001-of-00002.safetensors",
457
+ "image_encoder.blocks.31.attn.key.weight": "model-00001-of-00002.safetensors",
458
+ "image_encoder.blocks.31.attn.out.bias": "model-00001-of-00002.safetensors",
459
+ "image_encoder.blocks.31.attn.out.weight": "model-00001-of-00002.safetensors",
460
+ "image_encoder.blocks.31.attn.query.bias": "model-00001-of-00002.safetensors",
461
+ "image_encoder.blocks.31.attn.query.weight": "model-00001-of-00002.safetensors",
462
+ "image_encoder.blocks.31.attn.value.bias": "model-00001-of-00002.safetensors",
463
+ "image_encoder.blocks.31.attn.value.weight": "model-00001-of-00002.safetensors",
464
+ "image_encoder.blocks.31.ls1.weight": "model-00001-of-00002.safetensors",
465
+ "image_encoder.blocks.31.ls2.weight": "model-00002-of-00002.safetensors",
466
+ "image_encoder.blocks.31.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
467
+ "image_encoder.blocks.31.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
468
+ "image_encoder.blocks.31.mlp.output_layer.bias": "model-00002-of-00002.safetensors",
469
+ "image_encoder.blocks.31.mlp.output_layer.weight": "model-00002-of-00002.safetensors",
470
+ "image_encoder.blocks.31.norm1.bias": "model-00001-of-00002.safetensors",
471
+ "image_encoder.blocks.31.norm1.weight": "model-00001-of-00002.safetensors",
472
+ "image_encoder.blocks.31.norm2.bias": "model-00001-of-00002.safetensors",
473
+ "image_encoder.blocks.31.norm2.weight": "model-00001-of-00002.safetensors",
474
+ "image_encoder.blocks.4.attn.key.bias": "model-00001-of-00002.safetensors",
475
+ "image_encoder.blocks.4.attn.key.weight": "model-00001-of-00002.safetensors",
476
+ "image_encoder.blocks.4.attn.out.bias": "model-00001-of-00002.safetensors",
477
+ "image_encoder.blocks.4.attn.out.weight": "model-00001-of-00002.safetensors",
478
+ "image_encoder.blocks.4.attn.query.bias": "model-00001-of-00002.safetensors",
479
+ "image_encoder.blocks.4.attn.query.weight": "model-00001-of-00002.safetensors",
480
+ "image_encoder.blocks.4.attn.value.bias": "model-00001-of-00002.safetensors",
481
+ "image_encoder.blocks.4.attn.value.weight": "model-00001-of-00002.safetensors",
482
+ "image_encoder.blocks.4.ls1.weight": "model-00001-of-00002.safetensors",
483
+ "image_encoder.blocks.4.ls2.weight": "model-00001-of-00002.safetensors",
484
+ "image_encoder.blocks.4.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
485
+ "image_encoder.blocks.4.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
486
+ "image_encoder.blocks.4.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
487
+ "image_encoder.blocks.4.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
488
+ "image_encoder.blocks.4.norm1.bias": "model-00001-of-00002.safetensors",
489
+ "image_encoder.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
490
+ "image_encoder.blocks.4.norm2.bias": "model-00001-of-00002.safetensors",
491
+ "image_encoder.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
492
+ "image_encoder.blocks.5.attn.key.bias": "model-00001-of-00002.safetensors",
493
+ "image_encoder.blocks.5.attn.key.weight": "model-00001-of-00002.safetensors",
494
+ "image_encoder.blocks.5.attn.out.bias": "model-00001-of-00002.safetensors",
495
+ "image_encoder.blocks.5.attn.out.weight": "model-00001-of-00002.safetensors",
496
+ "image_encoder.blocks.5.attn.query.bias": "model-00001-of-00002.safetensors",
497
+ "image_encoder.blocks.5.attn.query.weight": "model-00001-of-00002.safetensors",
498
+ "image_encoder.blocks.5.attn.value.bias": "model-00001-of-00002.safetensors",
499
+ "image_encoder.blocks.5.attn.value.weight": "model-00001-of-00002.safetensors",
500
+ "image_encoder.blocks.5.ls1.weight": "model-00001-of-00002.safetensors",
501
+ "image_encoder.blocks.5.ls2.weight": "model-00001-of-00002.safetensors",
502
+ "image_encoder.blocks.5.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
503
+ "image_encoder.blocks.5.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
504
+ "image_encoder.blocks.5.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
505
+ "image_encoder.blocks.5.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
506
+ "image_encoder.blocks.5.norm1.bias": "model-00001-of-00002.safetensors",
507
+ "image_encoder.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
508
+ "image_encoder.blocks.5.norm2.bias": "model-00001-of-00002.safetensors",
509
+ "image_encoder.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
510
+ "image_encoder.blocks.6.attn.key.bias": "model-00001-of-00002.safetensors",
511
+ "image_encoder.blocks.6.attn.key.weight": "model-00001-of-00002.safetensors",
512
+ "image_encoder.blocks.6.attn.out.bias": "model-00001-of-00002.safetensors",
513
+ "image_encoder.blocks.6.attn.out.weight": "model-00001-of-00002.safetensors",
514
+ "image_encoder.blocks.6.attn.query.bias": "model-00001-of-00002.safetensors",
515
+ "image_encoder.blocks.6.attn.query.weight": "model-00001-of-00002.safetensors",
516
+ "image_encoder.blocks.6.attn.value.bias": "model-00001-of-00002.safetensors",
517
+ "image_encoder.blocks.6.attn.value.weight": "model-00001-of-00002.safetensors",
518
+ "image_encoder.blocks.6.ls1.weight": "model-00001-of-00002.safetensors",
519
+ "image_encoder.blocks.6.ls2.weight": "model-00001-of-00002.safetensors",
520
+ "image_encoder.blocks.6.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
521
+ "image_encoder.blocks.6.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
522
+ "image_encoder.blocks.6.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
523
+ "image_encoder.blocks.6.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
524
+ "image_encoder.blocks.6.norm1.bias": "model-00001-of-00002.safetensors",
525
+ "image_encoder.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
526
+ "image_encoder.blocks.6.norm2.bias": "model-00001-of-00002.safetensors",
527
+ "image_encoder.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
528
+ "image_encoder.blocks.7.attn.key.bias": "model-00001-of-00002.safetensors",
529
+ "image_encoder.blocks.7.attn.key.weight": "model-00001-of-00002.safetensors",
530
+ "image_encoder.blocks.7.attn.out.bias": "model-00001-of-00002.safetensors",
531
+ "image_encoder.blocks.7.attn.out.weight": "model-00001-of-00002.safetensors",
532
+ "image_encoder.blocks.7.attn.query.bias": "model-00001-of-00002.safetensors",
533
+ "image_encoder.blocks.7.attn.query.weight": "model-00001-of-00002.safetensors",
534
+ "image_encoder.blocks.7.attn.value.bias": "model-00001-of-00002.safetensors",
535
+ "image_encoder.blocks.7.attn.value.weight": "model-00001-of-00002.safetensors",
536
+ "image_encoder.blocks.7.ls1.weight": "model-00001-of-00002.safetensors",
537
+ "image_encoder.blocks.7.ls2.weight": "model-00001-of-00002.safetensors",
538
+ "image_encoder.blocks.7.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
539
+ "image_encoder.blocks.7.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
540
+ "image_encoder.blocks.7.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
541
+ "image_encoder.blocks.7.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
542
+ "image_encoder.blocks.7.norm1.bias": "model-00001-of-00002.safetensors",
543
+ "image_encoder.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
544
+ "image_encoder.blocks.7.norm2.bias": "model-00001-of-00002.safetensors",
545
+ "image_encoder.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
546
+ "image_encoder.blocks.8.attn.key.bias": "model-00001-of-00002.safetensors",
547
+ "image_encoder.blocks.8.attn.key.weight": "model-00001-of-00002.safetensors",
548
+ "image_encoder.blocks.8.attn.out.bias": "model-00001-of-00002.safetensors",
549
+ "image_encoder.blocks.8.attn.out.weight": "model-00001-of-00002.safetensors",
550
+ "image_encoder.blocks.8.attn.query.bias": "model-00001-of-00002.safetensors",
551
+ "image_encoder.blocks.8.attn.query.weight": "model-00001-of-00002.safetensors",
552
+ "image_encoder.blocks.8.attn.value.bias": "model-00001-of-00002.safetensors",
553
+ "image_encoder.blocks.8.attn.value.weight": "model-00001-of-00002.safetensors",
554
+ "image_encoder.blocks.8.ls1.weight": "model-00001-of-00002.safetensors",
555
+ "image_encoder.blocks.8.ls2.weight": "model-00001-of-00002.safetensors",
556
+ "image_encoder.blocks.8.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
557
+ "image_encoder.blocks.8.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
558
+ "image_encoder.blocks.8.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
559
+ "image_encoder.blocks.8.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
560
+ "image_encoder.blocks.8.norm1.bias": "model-00001-of-00002.safetensors",
561
+ "image_encoder.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
562
+ "image_encoder.blocks.8.norm2.bias": "model-00001-of-00002.safetensors",
563
+ "image_encoder.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
564
+ "image_encoder.blocks.9.attn.key.bias": "model-00001-of-00002.safetensors",
565
+ "image_encoder.blocks.9.attn.key.weight": "model-00001-of-00002.safetensors",
566
+ "image_encoder.blocks.9.attn.out.bias": "model-00001-of-00002.safetensors",
567
+ "image_encoder.blocks.9.attn.out.weight": "model-00001-of-00002.safetensors",
568
+ "image_encoder.blocks.9.attn.query.bias": "model-00001-of-00002.safetensors",
569
+ "image_encoder.blocks.9.attn.query.weight": "model-00001-of-00002.safetensors",
570
+ "image_encoder.blocks.9.attn.value.bias": "model-00001-of-00002.safetensors",
571
+ "image_encoder.blocks.9.attn.value.weight": "model-00001-of-00002.safetensors",
572
+ "image_encoder.blocks.9.ls1.weight": "model-00001-of-00002.safetensors",
573
+ "image_encoder.blocks.9.ls2.weight": "model-00001-of-00002.safetensors",
574
+ "image_encoder.blocks.9.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
575
+ "image_encoder.blocks.9.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
576
+ "image_encoder.blocks.9.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
577
+ "image_encoder.blocks.9.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
578
+ "image_encoder.blocks.9.norm1.bias": "model-00001-of-00002.safetensors",
579
+ "image_encoder.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
580
+ "image_encoder.blocks.9.norm2.bias": "model-00001-of-00002.safetensors",
581
+ "image_encoder.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
582
+ "image_encoder.cls_token": "model-00001-of-00002.safetensors",
583
+ "image_encoder.norm.bias": "model-00002-of-00002.safetensors",
584
+ "image_encoder.norm.weight": "model-00002-of-00002.safetensors",
585
+ "image_encoder.patch_embed.bias": "model-00001-of-00002.safetensors",
586
+ "image_encoder.patch_embed.weight": "model-00001-of-00002.safetensors",
587
+ "image_encoder.pos_embed": "model-00001-of-00002.safetensors",
588
+ "image_pooler.image_latents": "model-00002-of-00002.safetensors",
589
+ "image_pooler.pooler.linear1.bias": "model-00002-of-00002.safetensors",
590
+ "image_pooler.pooler.linear1.weight": "model-00002-of-00002.safetensors",
591
+ "image_pooler.pooler.linear2.bias": "model-00002-of-00002.safetensors",
592
+ "image_pooler.pooler.linear2.weight": "model-00002-of-00002.safetensors",
593
+ "image_pooler.pooler.multihead_attn.in_proj_bias": "model-00002-of-00002.safetensors",
594
+ "image_pooler.pooler.multihead_attn.in_proj_weight": "model-00002-of-00002.safetensors",
595
+ "image_pooler.pooler.multihead_attn.out_proj.bias": "model-00002-of-00002.safetensors",
596
+ "image_pooler.pooler.multihead_attn.out_proj.weight": "model-00002-of-00002.safetensors",
597
+ "image_pooler.pooler.norm1.bias": "model-00002-of-00002.safetensors",
598
+ "image_pooler.pooler.norm1.weight": "model-00002-of-00002.safetensors",
599
+ "image_pooler.pooler.norm2.bias": "model-00002-of-00002.safetensors",
600
+ "image_pooler.pooler.norm2.weight": "model-00002-of-00002.safetensors",
601
+ "image_pooler.pooler.norm3.bias": "model-00002-of-00002.safetensors",
602
+ "image_pooler.pooler.norm3.weight": "model-00002-of-00002.safetensors",
603
+ "image_pooler.pooler.self_attn.in_proj_bias": "model-00002-of-00002.safetensors",
604
+ "image_pooler.pooler.self_attn.in_proj_weight": "model-00002-of-00002.safetensors",
605
+ "image_pooler.pooler.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
606
+ "image_pooler.pooler.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
607
+ "image_pooler.projection.bias": "model-00002-of-00002.safetensors",
608
+ "image_pooler.projection.weight": "model-00002-of-00002.safetensors",
609
+ "text_decoder.lm_head.weight": "model-00001-of-00002.safetensors",
610
+ "text_decoder.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
611
+ "text_decoder.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
612
+ "text_decoder.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
613
+ "text_decoder.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
614
+ "text_decoder.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
615
+ "text_decoder.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
616
+ "text_decoder.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
617
+ "text_decoder.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
618
+ "text_decoder.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
619
+ "text_decoder.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
620
+ "text_decoder.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
621
+ "text_decoder.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
622
+ "text_decoder.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
623
+ "text_decoder.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
624
+ "text_decoder.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
625
+ "text_decoder.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
626
+ "text_decoder.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
627
+ "text_decoder.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
628
+ "text_decoder.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
629
+ "text_decoder.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
630
+ "text_decoder.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
631
+ "text_decoder.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
632
+ "text_decoder.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
633
+ "text_decoder.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
634
+ "text_decoder.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
635
+ "text_decoder.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
636
+ "text_decoder.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
637
+ "text_decoder.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
638
+ "text_decoder.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
639
+ "text_decoder.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
640
+ "text_decoder.model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
641
+ "text_decoder.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
642
+ "text_decoder.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
643
+ "text_decoder.model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
644
+ "text_decoder.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
645
+ "text_decoder.model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
646
+ "text_decoder.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
647
+ "text_decoder.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
648
+ "text_decoder.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
649
+ "text_decoder.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
650
+ "text_decoder.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
651
+ "text_decoder.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
652
+ "text_decoder.model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
653
+ "text_decoder.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
654
+ "text_decoder.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
655
+ "text_decoder.model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
656
+ "text_decoder.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
657
+ "text_decoder.model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
658
+ "text_decoder.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
659
+ "text_decoder.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
660
+ "text_decoder.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
661
+ "text_decoder.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
662
+ "text_decoder.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
663
+ "text_decoder.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
664
+ "text_decoder.model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
665
+ "text_decoder.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
666
+ "text_decoder.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
667
+ "text_decoder.model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
668
+ "text_decoder.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
669
+ "text_decoder.model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
670
+ "text_decoder.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
671
+ "text_decoder.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
672
+ "text_decoder.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
673
+ "text_decoder.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
674
+ "text_decoder.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
675
+ "text_decoder.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
676
+ "text_decoder.model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
677
+ "text_decoder.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
678
+ "text_decoder.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
679
+ "text_decoder.model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
680
+ "text_decoder.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
681
+ "text_decoder.model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
682
+ "text_decoder.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
683
+ "text_decoder.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
684
+ "text_decoder.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
685
+ "text_decoder.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
686
+ "text_decoder.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
687
+ "text_decoder.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
688
+ "text_decoder.model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
689
+ "text_decoder.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
690
+ "text_decoder.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
691
+ "text_decoder.model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
692
+ "text_decoder.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
693
+ "text_decoder.model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
694
+ "text_decoder.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
695
+ "text_decoder.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
696
+ "text_decoder.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
697
+ "text_decoder.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
698
+ "text_decoder.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
699
+ "text_decoder.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
700
+ "text_decoder.model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
701
+ "text_decoder.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
702
+ "text_decoder.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
703
+ "text_decoder.model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
704
+ "text_decoder.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
705
+ "text_decoder.model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
706
+ "text_decoder.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
707
+ "text_decoder.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
708
+ "text_decoder.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
709
+ "text_decoder.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
710
+ "text_decoder.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
711
+ "text_decoder.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
712
+ "text_decoder.model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
713
+ "text_decoder.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
714
+ "text_decoder.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
715
+ "text_decoder.model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
716
+ "text_decoder.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
717
+ "text_decoder.model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
718
+ "text_decoder.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
719
+ "text_decoder.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
720
+ "text_decoder.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
721
+ "text_decoder.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
722
+ "text_decoder.model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
723
+ "text_decoder.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
724
+ "text_decoder.model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
725
+ "text_decoder.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
726
+ "text_decoder.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
727
+ "text_decoder.model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
728
+ "text_decoder.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
729
+ "text_decoder.model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
730
+ "text_decoder.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
731
+ "text_decoder.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
732
+ "text_decoder.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
733
+ "text_decoder.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
734
+ "text_decoder.model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
735
+ "text_decoder.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
736
+ "text_decoder.model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
737
+ "text_decoder.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
738
+ "text_decoder.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
739
+ "text_decoder.model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
740
+ "text_decoder.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
741
+ "text_decoder.model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
742
+ "text_decoder.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
743
+ "text_decoder.model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
744
+ "text_decoder.model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
745
+ "text_decoder.model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
746
+ "text_decoder.model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
747
+ "text_decoder.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
748
+ "text_decoder.model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
749
+ "text_decoder.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
750
+ "text_decoder.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
751
+ "text_decoder.model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
752
+ "text_decoder.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
753
+ "text_decoder.model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
754
+ "text_decoder.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
755
+ "text_decoder.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
756
+ "text_decoder.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
757
+ "text_decoder.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
758
+ "text_decoder.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
759
+ "text_decoder.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
760
+ "text_decoder.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
761
+ "text_decoder.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
762
+ "text_decoder.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
763
+ "text_decoder.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
764
+ "text_decoder.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
765
+ "text_decoder.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
766
+ "text_decoder.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
767
+ "text_decoder.model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
768
+ "text_decoder.model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
769
+ "text_decoder.model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
770
+ "text_decoder.model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
771
+ "text_decoder.model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
772
+ "text_decoder.model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
773
+ "text_decoder.model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
774
+ "text_decoder.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
775
+ "text_decoder.model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
776
+ "text_decoder.model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
777
+ "text_decoder.model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
778
+ "text_decoder.model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
779
+ "text_decoder.model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
780
+ "text_decoder.model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
781
+ "text_decoder.model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
782
+ "text_decoder.model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
783
+ "text_decoder.model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
784
+ "text_decoder.model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
785
+ "text_decoder.model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
786
+ "text_decoder.model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
787
+ "text_decoder.model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
788
+ "text_decoder.model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
789
+ "text_decoder.model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
790
+ "text_decoder.model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
791
+ "text_decoder.model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
792
+ "text_decoder.model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
793
+ "text_decoder.model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
794
+ "text_decoder.model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
795
+ "text_decoder.model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
796
+ "text_decoder.model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
797
+ "text_decoder.model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
798
+ "text_decoder.model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
799
+ "text_decoder.model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
800
+ "text_decoder.model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
801
+ "text_decoder.model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
802
+ "text_decoder.model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
803
+ "text_decoder.model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
804
+ "text_decoder.model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
805
+ "text_decoder.model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
806
+ "text_decoder.model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
807
+ "text_decoder.model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
808
+ "text_decoder.model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
809
+ "text_decoder.model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
810
+ "text_decoder.model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
811
+ "text_decoder.model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
812
+ "text_decoder.model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
813
+ "text_decoder.model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
814
+ "text_decoder.model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
815
+ "text_decoder.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
816
+ "text_decoder.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
817
+ "text_decoder.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
818
+ "text_decoder.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
819
+ "text_decoder.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
820
+ "text_decoder.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
821
+ "text_decoder.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
822
+ "text_decoder.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
823
+ "text_decoder.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
824
+ "text_decoder.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
825
+ "text_decoder.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
826
+ "text_decoder.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
827
+ "text_decoder.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
828
+ "text_decoder.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
829
+ "text_decoder.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
830
+ "text_decoder.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
831
+ "text_decoder.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
832
+ "text_decoder.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
833
+ "text_decoder.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
834
+ "text_decoder.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
835
+ "text_decoder.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
836
+ "text_decoder.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
837
+ "text_decoder.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
838
+ "text_decoder.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
839
+ "text_decoder.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
840
+ "text_decoder.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
841
+ "text_decoder.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
842
+ "text_decoder.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
843
+ "text_decoder.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
844
+ "text_decoder.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
845
+ "text_decoder.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
846
+ "text_decoder.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
847
+ "text_decoder.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
848
+ "text_decoder.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
849
+ "text_decoder.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
850
+ "text_decoder.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
851
+ "text_decoder.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
852
+ "text_decoder.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
853
+ "text_decoder.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
854
+ "text_decoder.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
855
+ "text_decoder.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
856
+ "text_decoder.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
857
+ "text_decoder.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
858
+ "text_decoder.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
859
+ "text_decoder.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
860
+ "text_decoder.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
861
+ "text_decoder.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
862
+ "text_decoder.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
863
+ "text_decoder.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
864
+ "text_decoder.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
865
+ "text_decoder.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
866
+ "text_decoder.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
867
+ "text_decoder.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
868
+ "text_decoder.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
869
+ "text_decoder.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
870
+ "text_decoder.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
871
+ "text_decoder.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
872
+ "text_decoder.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
873
+ "text_decoder.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
874
+ "text_decoder.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
875
+ "text_decoder.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
876
+ "text_decoder.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
877
+ "text_decoder.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
878
+ "text_decoder.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
879
+ "text_decoder.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
880
+ "text_decoder.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
881
+ "text_decoder.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
882
+ "text_decoder.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
883
+ "text_decoder.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
884
+ "text_decoder.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
885
+ "text_decoder.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
886
+ "text_decoder.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
887
+ "text_decoder.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
888
+ "text_decoder.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
889
+ "text_decoder.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
890
+ "text_decoder.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
891
+ "text_decoder.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
892
+ "text_decoder.model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
893
+ "text_decoder.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
894
+ "text_decoder.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
895
+ "text_decoder.model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
896
+ "text_decoder.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
897
+ "text_decoder.model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
898
+ "text_decoder.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
899
+ "text_decoder.model.norm.weight": "model-00001-of-00002.safetensors"
900
+ }
901
+ }
modeling_uform_gen.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+
3
+ from .configuration_uform_gen import VLMConfig
4
+
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from torch.utils.checkpoint import checkpoint
8
+ from torch import nn
9
+
10
+ from transformers.modeling_outputs import CausalLMOutputWithPast
11
+ from transformers.modeling_utils import PreTrainedModel
12
+ from transformers.models.auto.modeling_auto import AutoModelForCausalLM, AutoModel
13
+ from transformers import AutoConfig
14
+ from transformers.utils import logging
15
+
16
+ from .vision_encoder import VisionEncoder
17
+
18
+
19
+ class ImageFeaturesPooler(nn.Module):
20
+ def __init__(self, config, text_config):
21
+ super().__init__()
22
+ self.pooler = nn.TransformerDecoderLayer(
23
+ config.image_encoder_hidden_size,
24
+ config.image_pooler_num_attn_heads,
25
+ config.image_pooler_intermediate_size,
26
+ activation=nn.functional.silu,
27
+ batch_first=True,
28
+ norm_first=True,
29
+ )
30
+ self.image_latents = nn.Parameter(
31
+ torch.randn(1, config.num_image_latents, config.image_encoder_hidden_size)
32
+ * config.initializer_range**0.5
33
+ )
34
+ self.projection = nn.Linear(config.image_encoder_hidden_size, text_config.hidden_size)
35
+
36
+ def forward(self, features):
37
+ features = self.pooler(
38
+ self.image_latents.expand(features.size(0), -1, -1), features
39
+ )
40
+
41
+ return self.projection(features)
42
+
43
+
44
+ class VLMPreTrainedModel(PreTrainedModel):
45
+ config_class = VLMConfig
46
+ base_model_prefix = "vlm"
47
+ supports_gradient_checkpointing = True
48
+ _no_split_modules = []
49
+ _skip_keys_device_placement = "past_key_values"
50
+
51
+ def _init_weights(self, module):
52
+ pass
53
+
54
+ def _initialize_weights(self, module):
55
+ pass
56
+
57
+
58
+ class VLMForCausalLM(VLMPreTrainedModel):
59
+ def __init__(self, config: VLMConfig):
60
+ super().__init__(config)
61
+
62
+ self.config = config
63
+ self.text_config = AutoConfig.from_pretrained(
64
+ config.text_decoder_name_or_path,
65
+ trust_remote_code=True
66
+ )
67
+
68
+ self.text_decoder = AutoModelForCausalLM.from_config(
69
+ self.text_config,
70
+ trust_remote_code=True
71
+ )
72
+
73
+ self.image_encoder = VisionEncoder(
74
+ config.image_encoder_hidden_size,
75
+ config.image_encoder_patch_size,
76
+ config.image_encoder_num_layers,
77
+ config.image_encoder_num_heads,
78
+ )
79
+
80
+ self.image_pooler = ImageFeaturesPooler(config, self.text_config)
81
+
82
+ def get_input_embeddings(self):
83
+ return self.text_decoder.get_input_embeddings()
84
+
85
+ def set_input_embeddings(self, value):
86
+ self.text_decoder.set_input_embeddings(value)
87
+
88
+ def get_images_embeddings(self, images):
89
+ features = self.image_encoder(images)
90
+ return self.image_pooler(features)
91
+
92
+ def gather_continuous_embeddings(
93
+ self,
94
+ input_ids: torch.Tensor,
95
+ word_embeddings: torch.Tensor,
96
+ image_embeddings: torch.Tensor
97
+ ) -> torch.Tensor:
98
+
99
+ start_indices = (input_ids == self.config.image_token_id).nonzero()[:, 1]
100
+ embeddings = []
101
+ for sample_idx, start_idx in enumerate(start_indices.tolist()):
102
+ embeddings.append(
103
+ torch.cat(
104
+ (
105
+ word_embeddings[sample_idx, :start_idx],
106
+ image_embeddings[sample_idx],
107
+ word_embeddings[sample_idx, start_idx + 1 :],
108
+ ),
109
+ dim=0,
110
+ )
111
+ )
112
+
113
+ return torch.stack(embeddings, dim=0)
114
+
115
+ def forward(
116
+ self,
117
+ input_ids: torch.LongTensor = None,
118
+ images: torch.Tensor = None,
119
+ attention_mask: Optional[torch.Tensor] = None,
120
+ position_ids: Optional[torch.LongTensor] = None,
121
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
122
+ inputs_embeds: Optional[torch.FloatTensor] = None,
123
+ use_cache: Optional[bool] = None,
124
+ labels: Optional[torch.Tensor] = None,
125
+ output_attentions: Optional[bool] = None,
126
+ output_hidden_states: Optional[bool] = None,
127
+ return_dict: Optional[bool] = None
128
+ ) -> Union[dict, Tuple, CausalLMOutputWithPast]:
129
+ output_attentions = (
130
+ output_attentions
131
+ if output_attentions is not None
132
+ else self.config.output_attentions
133
+ )
134
+ output_hidden_states = (
135
+ output_hidden_states
136
+ if output_hidden_states is not None
137
+ else self.config.output_hidden_states
138
+ )
139
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
140
+
141
+ return_dict = (
142
+ return_dict if return_dict is not None else self.config.use_return_dict
143
+ )
144
+
145
+ if input_ids is not None and inputs_embeds is not None:
146
+ raise ValueError(
147
+ "You cannot specify both input_ids and inputs_embeds at the same time"
148
+ )
149
+ elif input_ids is None and inputs_embeds is None:
150
+ raise ValueError("You have to specify either input_is or inputs_embeds")
151
+
152
+ if inputs_embeds is None and past_key_values is None:
153
+ inputs_embeds = self.get_input_embeddings()(input_ids)
154
+
155
+ if images is not None:
156
+ image_embeds = self.get_images_embeddings(images)
157
+ inputs_embeds = self.gather_continuous_embeddings(
158
+ input_ids,
159
+ inputs_embeds,
160
+ image_embeds
161
+ )
162
+
163
+ if position_ids is None:
164
+ seq_length = (
165
+ inputs_embeds.shape[1]
166
+ if inputs_embeds is not None
167
+ else input_ids.shape[1]
168
+ )
169
+ past_key_values_length = 0
170
+
171
+ if past_key_values is not None:
172
+ past_key_values_length = past_key_values[0][0].shape[2]
173
+
174
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
175
+ position_ids = torch.arange(
176
+ past_key_values_length,
177
+ seq_length + past_key_values_length,
178
+ dtype=torch.long,
179
+ device=device,
180
+ )
181
+ position_ids = position_ids.unsqueeze(0)
182
+
183
+ outputs = self.text_decoder(
184
+ inputs_embeds=inputs_embeds,
185
+ input_ids=input_ids if past_key_values is not None else None,
186
+ attention_mask=attention_mask,
187
+ position_ids=position_ids,
188
+ past_key_values=past_key_values,
189
+ output_attentions=output_attentions,
190
+ output_hidden_states=output_hidden_states,
191
+ use_cache=use_cache,
192
+ return_dict=return_dict,
193
+ )
194
+
195
+ return outputs
196
+
197
+ def prepare_inputs_for_generation(
198
+ self,
199
+ input_ids,
200
+ images=None,
201
+ past_key_values=None,
202
+ attention_mask=None,
203
+ inputs_embeds=None,
204
+ **kwargs,
205
+ ):
206
+ if past_key_values:
207
+ input_ids = input_ids[:, -1:]
208
+
209
+ position_ids = kwargs.get("position_ids", None)
210
+ if attention_mask is not None and position_ids is None:
211
+ # create position_ids on the fly for batch generation
212
+ position_ids = attention_mask.long().cumsum(-1) - 1
213
+ position_ids.masked_fill_(attention_mask == 0, 1)
214
+ if past_key_values:
215
+ position_ids = position_ids[:, -1].unsqueeze(-1)
216
+
217
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
218
+ if inputs_embeds is not None and past_key_values is None:
219
+ model_inputs = {"inputs_embeds": inputs_embeds}
220
+ n_samples = inputs_embeds.shape[0]
221
+ else:
222
+ model_inputs = {"input_ids": input_ids}
223
+ n_samples = input_ids.shape[0]
224
+
225
+ if images is not None:
226
+ model_inputs["images"] = images
227
+
228
+ model_inputs.update(
229
+ {
230
+ "position_ids": position_ids,
231
+ "past_key_values": past_key_values,
232
+ "use_cache": kwargs.get("use_cache"),
233
+ "attention_mask": attention_mask,
234
+ "images": images if past_key_values is None else None,
235
+ }
236
+ )
237
+ return model_inputs
238
+
239
+ @classmethod
240
+ def from_config(cls, config, **kwargs):
241
+ return cls._from_config(config, **kwargs)
242
+
243
+
244
+ VLMConfig.register_for_auto_class()
245
+ VLMForCausalLM.register_for_auto_class("AutoModel")
vision_encoder.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch.nn.functional as F
3
+ import torch
4
+ from torch import Tensor
5
+ from typing import Optional
6
+
7
+ class Attention(nn.Module):
8
+
9
+ def __init__(
10
+ self,
11
+ dim: int,
12
+ num_heads: int,
13
+ dropout_prob: float = 0
14
+ ):
15
+ super().__init__()
16
+
17
+ self.use_sdp = int(torch.__version__[0]) > 1
18
+
19
+ self.query = nn.Linear(dim, dim)
20
+ self.key = nn.Linear(dim, dim)
21
+ self.value = nn.Linear(dim, dim)
22
+ self.out = nn.Linear(dim, dim)
23
+
24
+ self.dropout_prob = dropout_prob
25
+ self.num_heads = num_heads
26
+ self.head_dim = dim // num_heads
27
+ self.scale = self.head_dim**-0.5
28
+
29
+ def forward(
30
+ self,
31
+ x: Tensor,
32
+ attn_mask: Optional[Tensor] = None,
33
+ context: Optional[Tensor] = None,
34
+ is_causal: bool = False,
35
+ ) -> Tensor:
36
+
37
+ query = self.reshape(self.query(x))
38
+ key = self.reshape(self.key(x if context is None else context))
39
+ value = self.reshape(self.value(x if context is None else context))
40
+
41
+ if self.use_sdp:
42
+ x = F.scaled_dot_product_attention(
43
+ query,
44
+ key,
45
+ value,
46
+ attn_mask,
47
+ dropout_p=self.dropout_prob if self.training else 0,
48
+ is_causal=is_causal,
49
+ )
50
+ else:
51
+ attn = query @ key.transpose(-2, -1) * self.scale
52
+ if attn_mask is not None:
53
+ attn += attn_mask
54
+
55
+ attn = attn.softmax(dim=-1)
56
+ x = attn @ value
57
+
58
+ return self.out(x.transpose(2, 1).flatten(2))
59
+
60
+ def reshape(self, x: Tensor) -> Tensor:
61
+ batch_size, seq_len, _ = x.shape
62
+ x = x.view(batch_size, seq_len, self.num_heads, self.head_dim)
63
+ return x.transpose(2, 1)
64
+
65
+
66
+ class MLP(nn.Module):
67
+
68
+ def __init__(
69
+ self,
70
+ dim: int,
71
+ dim_expand_factor: int = 4
72
+ ):
73
+ super().__init__()
74
+
75
+ self.hidden_layer = nn.Linear(dim, dim * dim_expand_factor)
76
+ self.output_layer = nn.Linear(dim * dim_expand_factor, dim)
77
+
78
+ def forward(self, x: Tensor) -> Tensor:
79
+ x = F.gelu(self.hidden_layer(x))
80
+ return self.output_layer(x)
81
+
82
+
83
+ class LayerScale(nn.Module):
84
+
85
+ def __init__(
86
+ self,
87
+ dim: int,
88
+ init_values: float = 1e-5,
89
+ inplace: bool = False
90
+ ):
91
+ super().__init__()
92
+ self.weight = nn.Parameter(init_values * torch.ones(dim))
93
+ self.inplace = inplace
94
+
95
+ def forward(self, x: Tensor) -> Tensor:
96
+ return x.mul_(self.weight) if self.inplace else x * self.weight
97
+
98
+
99
+ class VisionEncoderBlock(nn.Module):
100
+
101
+ def __init__(
102
+ self,
103
+ dim: int,
104
+ num_heads: int
105
+ ):
106
+ super().__init__()
107
+ self.norm1 = nn.LayerNorm(dim, eps=1e-6)
108
+ self.attn = Attention(dim, num_heads)
109
+ self.ls1 = LayerScale(dim)
110
+
111
+ self.norm2 = nn.LayerNorm(dim, eps=1e-6)
112
+ self.mlp = MLP(dim)
113
+ self.ls2 = LayerScale(dim)
114
+
115
+ def forward(self, x: Tensor) -> Tensor:
116
+ x = x + self.ls1(self.attn(self.norm1(x)))
117
+ x = x + self.ls2(self.mlp(self.norm2(x)))
118
+ return x
119
+
120
+
121
+ class VisionEncoder(nn.Module):
122
+
123
+ def __init__(
124
+ self,
125
+ dim: int,
126
+ patch_size: int,
127
+ num_layers: int,
128
+ num_heads: int,
129
+ ):
130
+ super().__init__()
131
+
132
+ self.n_patch = 224 // patch_size
133
+ self.seq_len = self.n_patch ** 2
134
+ self.patch_size = patch_size
135
+
136
+ self.patch_embed = nn.Conv2d(3, dim, patch_size, patch_size)
137
+ self.pos_embed = nn.Parameter(torch.randn(1, self.seq_len, dim) * 0.02)
138
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, dim))
139
+ self.interpolate_offset = 0.1
140
+ self.interpolate_antialias = False
141
+
142
+ self.blocks = nn.Sequential(
143
+ *[
144
+ VisionEncoderBlock(dim, num_heads)
145
+ for _ in range(num_layers)
146
+ ]
147
+ )
148
+
149
+ self.norm = nn.LayerNorm(dim, eps=1e-6)
150
+
151
+ def interpolate_pos_encoding(self, x, h, w):
152
+ previous_dtype = x.dtype
153
+
154
+ if x.shape[1] == self.seq_len and w == h:
155
+ return self.pos_embed
156
+
157
+ pos_embed = self.pos_embed.float()
158
+
159
+ dim = x.shape[-1]
160
+ w0 = w // self.patch_size
161
+ h0 = h // self.patch_size
162
+ # we add a small number to avoid floating point error in the interpolation
163
+ # see discussion at https://github.com/facebookresearch/dino/issues/8
164
+ w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
165
+ sx, sy = float(w0) / self.n_patch, float(h0) / self.n_patch
166
+
167
+ pos_embed = nn.functional.interpolate(
168
+ pos_embed.reshape(1, self.n_patch, self.n_patch, dim).permute(0, 3, 1, 2),
169
+ scale_factor=(sy, sx),
170
+ mode="bicubic",
171
+ antialias=self.interpolate_antialias,
172
+ )
173
+
174
+ return pos_embed.to(previous_dtype).flatten(start_dim=2).transpose(2, 1)
175
+
176
+ def forward(self, x: Tensor) -> Tensor:
177
+ h, w = x.shape[2:]
178
+ x = self.patch_embed(x).flatten(start_dim=2).transpose(2, 1)
179
+ x = x + self.interpolate_pos_encoding(x, h, w)
180
+ x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
181
+ x = self.blocks(x)
182
+ return self.norm(x)