akjindal53244 commited on
Commit
8160143
1 Parent(s): 3771c38

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -120
README.md CHANGED
@@ -1,171 +1,157 @@
1
  ---
2
  library_name: peft
3
  base_model: mistralai/Mistral-7B-v0.1
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
 
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Shared by [optional]:** [More Information Needed]
22
- - **Model type:** [More Information Needed]
23
- - **Language(s) (NLP):** [More Information Needed]
24
- - **License:** [More Information Needed]
25
- - **Finetuned from model [optional]:** [More Information Needed]
26
-
27
  ### Model Sources [optional]
28
 
29
- <!-- Provide the basic links for the model. -->
30
-
31
- - **Repository:** [More Information Needed]
32
- - **Paper [optional]:** [More Information Needed]
33
- - **Demo [optional]:** [More Information Needed]
34
 
35
  ## Uses
36
 
37
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
38
 
39
- ### Direct Use
 
40
 
41
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
42
 
43
- [More Information Needed]
44
-
45
- ### Downstream Use [optional]
 
46
 
47
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
48
 
49
- [More Information Needed]
50
 
51
- ### Out-of-Scope Use
52
 
53
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
 
55
- [More Information Needed]
56
-
57
- ## Bias, Risks, and Limitations
58
-
59
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
-
61
- [More Information Needed]
62
-
63
- ### Recommendations
64
-
65
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
-
67
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
 
69
  ## How to Get Started with the Model
70
 
71
- Use the code below to get started with the model.
72
-
73
- [More Information Needed]
74
 
75
  ## Training Details
76
 
77
- ### Training Data
78
-
79
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
-
81
- [More Information Needed]
82
-
83
- ### Training Procedure
84
 
85
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
 
87
- #### Preprocessing [optional]
 
88
 
89
- [More Information Needed]
90
 
91
 
92
  #### Training Hyperparameters
93
 
94
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
 
96
- #### Speeds, Sizes, Times [optional]
97
-
98
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
-
100
- [More Information Needed]
101
 
102
  ## Evaluation
103
 
104
  <!-- This section describes the evaluation protocols and provides the results. -->
105
 
106
- ### Testing Data, Factors & Metrics
107
-
108
- #### Testing Data
109
-
110
- <!-- This should link to a Data Card if possible. -->
111
-
112
- [More Information Needed]
113
-
114
- #### Factors
115
-
116
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Metrics
121
-
122
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
-
124
- [More Information Needed]
125
-
126
  ### Results
127
 
128
- [More Information Needed]
129
-
130
- #### Summary
131
-
132
-
133
-
134
- ## Model Examination [optional]
135
-
136
- <!-- Relevant interpretability work for the model goes here -->
137
-
138
- [More Information Needed]
139
-
140
- ## Environmental Impact
141
-
142
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
-
144
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
-
146
- - **Hardware Type:** [More Information Needed]
147
- - **Hours used:** [More Information Needed]
148
- - **Cloud Provider:** [More Information Needed]
149
- - **Compute Region:** [More Information Needed]
150
- - **Carbon Emitted:** [More Information Needed]
151
-
152
- ## Technical Specifications [optional]
153
-
154
- ### Model Architecture and Objective
155
-
156
- [More Information Needed]
157
-
158
- ### Compute Infrastructure
159
-
160
- [More Information Needed]
161
-
162
- #### Hardware
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
 
164
- [More Information Needed]
165
-
166
- #### Software
167
-
168
- [More Information Needed]
169
 
170
  ## Citation [optional]
171
 
@@ -216,4 +202,4 @@ The following `bitsandbytes` quantization config was used during training:
216
  ### Framework versions
217
 
218
 
219
- - PEFT 0.6.1
 
1
  ---
2
  library_name: peft
3
  base_model: mistralai/Mistral-7B-v0.1
4
+ license: apache-2.0
5
+ datasets:
6
+ - upaya07/NeurIPS-LLM-data
7
+ language:
8
+ - en
9
+ tags:
10
+ - NeurIPS
11
+ - NeurIPS LLM Efficiency Challenge
12
+ - NeurIPS LLM Efficiency Challenge Winner Model
13
+ - Team Upaya
14
  ---
15
 
16
  # Model Card for Model ID
17
+ [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](CODE_LICENSE)
18
+ [![Model Weight License](https://img.shields.io/badge/Model%20Weights%20License-Apache_2.0-green.svg)](LICENSE)
19
+ [![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/release/python-390/)
20
 
 
21
 
22
+ - 🚀🚀🚀 Our model **Birbal-7B-V1** achieved 🏆 first rank 🏆 in among 80+ global teams in [**NeurIPS Large Language Model Efficiency Challenge: 1 LLM + 1GPU + 1Day**](https://llm-efficiency-challenge.github.io/) organized by Microsoft and Meta.
23
 
24
+ - 📣 **P.S.:** Please reach out to us, if you would be interested in supporting compute resources. Here are our recent achievements in LLM space: https://upaya.ai/
25
 
26
  ## Model Details
27
+ **Birbal-7B-V1** is fine-tuned on our curated dataset of 200k size for nearly 3 epochs. Our approach for dataset preparation is focused on finding most-relavant examples from large pool of tasks spanning across NLP, Maths, Commonsense, etc. Hence, we expect model to perform well on different tasks including unseen tasks.
28
 
29
  ### Model Description
30
 
31
+ - **Project GitHub Page:** https://github.com/Upaya07/NeurIPS-llm-efficiency-challenge
32
+ - **Developed by:** ❤️ Team **Upaya** - [Ashvini Kumar Jindal](https://www.linkedin.com/in/ashvini-jindal-26653262/), [Ankur Parikh](https://www.linkedin.com/in/ankurnlpexpert/), [Pawan Rajpoot](https://www.linkedin.com/in/pawanrajpoot/)
33
+ - **Funded by:** self-work
34
+ - **Model type:** fine-tuned. It is a PEFT model and can be combined with [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) model.
35
+ - **Language(s) (NLP):** English
36
+ - **License:** Apache-2.0
37
+ - **Finetuned from model:** mistralai/Mistral-7B-v0.1
38
+
 
 
 
39
  ### Model Sources [optional]
40
 
41
+ - **Repository:** https://github.com/Upaya07/NeurIPS-llm-efficiency-challenge
 
 
 
 
42
 
43
  ## Uses
44
 
45
+ Birbal-7B-V1 is trained with the following format:
46
+ ```
47
+ ##Instruction
48
+ <instruction>
49
 
50
+ ##Input
51
+ <input>
52
 
53
+ ##Response
54
+ <response>
55
+ ```
56
 
57
+ If a record does not contain any instruction, here is the training format:
58
+ ```
59
+ ##Input
60
+ <input>
61
 
62
+ ##Response
63
+ <response>
64
+ ```
65
 
66
+ It will performed best if queried in the same way.
67
 
68
+ ### Downstream Use
69
 
70
+ Birbal-7B-V1 is fine-tuned on our curated dataset that contain examples from large number of tasks spanning across NLP, Maths, QA, etc. Hence, we expect the model to perform well on in general on various kinds of tasks.
71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  ## How to Get Started with the Model
74
 
75
+ It is quite easy! Merge Birbal-7B-V1 peft model with Mistral-7B model and start running inference!
 
 
76
 
77
  ## Training Details
78
 
79
+ We used [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base model and fine-tuned it on a single RTX 4090 GPU for 24 hours as per the competition rules. Fine-tuning was performed using 4-bit QLoRA.
 
 
 
 
 
 
80
 
81
+ ### Training Data
82
 
83
+ Here is high-level diagram of our data preparation strategy:
84
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/ot0yJdO6VpKvPYKd-XEuy.png)
85
 
86
+ Please visit https://huggingface.co/datasets/upaya07/NeurIPS-LLM-data for more details.
87
 
88
 
89
  #### Training Hyperparameters
90
 
91
+ Refer to https://github.com/Upaya07/NeurIPS-llm-efficiency-challenge/blob/main/training/axolotl/examples/mistral/nips/nips_02.yml for example set of hyperparams used.
92
 
 
 
 
 
 
93
 
94
  ## Evaluation
95
 
96
  <!-- This section describes the evaluation protocols and provides the results. -->
97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
  ### Results
99
 
100
+ | Task | Score |
101
+ | ----- |------|
102
+ | MMLU - EM | 0.629 |
103
+ | MMLU - EM (Robustness) | 0.591 |
104
+ | MMLU - EM (Fairness) | 0.596 |
105
+ | MMLU Mean Win Rate | 0.417 |
106
+ | TruthfulQA - EM | 0.59 |
107
+ | TruthfulQA - EM (Robustness) | 0.541 |
108
+ | TruthfulQA - EM (Fairness) | 0.492 |
109
+ | TruthfulQA Mean Win Rate | 0.75 |
110
+ | BIG-bench - EM | 0.330 |
111
+ | BIG-bench Mean Win Rate | 0.75 |
112
+ | GSM8K - EM | 0.443 |
113
+ | GSM8K Mean Win Rate | 0.625 |
114
+ | BBQ - EM | 0.738 |
115
+ | BBQ Mean Win Rate | 0.25 |
116
+ | sam_sum - ROUGE-2 | 0.127 |
117
+ | sam_sum - Stereotypes (race) | 0.667 |
118
+ | sam_sum - Stereotypes (gender) | 0.447 |
119
+ | sam_sum - Representation (race) | 0.458 |
120
+ | sam_sum - Representation (gender) | 0.013 |
121
+ | sam_sum Mean Win Rate | 0.383 |
122
+ | corr2cause - EM | 0.615 |
123
+ | corr2cause Mean Win Rate | 0.875 |
124
+ | MATH (chain-of-thoughts) - Equivalent (chain of thought) | 0.121 |
125
+ | MATH Mean Win Rate | 0.75 |
126
+ | ethics_justice - EM | 0.68 |
127
+ | ethics_justice - EM (Robustness) | 0.645 |
128
+ | ethics_justice - EM (Fairness) | 0.62 |
129
+ | ethics_commonsense - EM | 0.41 |
130
+ | ethics_commonsense - EM (Robustness) | 0.33 |
131
+ | ethics_commonsense - EM (Fairness) | 0.345 |
132
+ | ethics_virtue - EM | 0.895 |
133
+ | ethics_virtue - EM (Robustness) | 0.865 |
134
+ | ethics_virtue - EM (Fairness) | 0.86 |
135
+ | ethics_deontology - EM | 0.63 |
136
+ | ethics_deontology - EM (Robustness) | 0.585 |
137
+ | ethics_deontology - EM (Fairness) | 0.595 |
138
+ | ethics_utilitarianism - EM | 0.72 |
139
+ | ethics_utilitarianism - EM (Robustness) | 0.6 |
140
+ | ethics_utilitarianism - EM (Fairness) | 0.645 |
141
+ | ethics Mean Win Rate | 0.55 |
142
+ | 🔥 **Score_full** | **0.579** |
143
+ | 🔥 **Score_open** | **0.516** |
144
+ | 🔥 **Score_hidden** | **0.61** |
145
+
146
+ #### Top-5 Teams
147
+ | Position | Score |
148
+ | ----- |------|
149
+ | 5th rank | 0.362 |
150
+ | 4th rank | 0.371 |
151
+ | 3rd rank | 0.381 |
152
+ | 2nd rank | 0.424 |
153
+ | 🔥 **Ours (1st)** | **0.579** |
154
 
 
 
 
 
 
155
 
156
  ## Citation [optional]
157
 
 
202
  ### Framework versions
203
 
204
 
205
+ - PEFT 0.6.1