--- license: apache-2.0 language: - en - fr - de - es - pt - it library_name: gliner pipeline_tag: token-classification datasets: - urchade/synthetic-pii-ner-mistral-v1 --- # Model Card for GLiNER-multi GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios. This version has been ot recognize and classify **Personally Identifiable Information** (PII) within text. The training dataset has been generated using `mistralai/Mistral-7B-Instruct-v0.2`. ## Links * Paper: https://arxiv.org/abs/2311.08526 * Repository: https://github.com/urchade/GLiNER ```python from gliner import GLiNER model = GLiNER.from_pretrained("urchade/gliner_multi_pii-v1") text = """ Harilala Rasoanaivo, un homme d'affaires local d'Antananarivo, a enregistré une nouvelle société nommée "Rasoanaivo Enterprises" au Lot II M 92 Antohomadinika. Son numéro est le +261 32 22 345 67, et son adresse électronique est harilala.rasoanaivo@telma.mg. Il a fourni son numéro de sécu 501-02-1234 pour l'enregistrement. """ labels = ["work", "booking number", "personally identifiable information", "driver licence", "person", "book", "full address", "company", "actor", "character", "email", "passport number", "Social Security Number", "phone number"] entities = model.predict_entities(text, labels) for entity in entities: print(entity["text"], "=>", entity["label"]) ``` ``` Harilala Rasoanaivo => person Rasoanaivo Enterprises => company Lot II M 92 Antohomadinika => full address +261 32 22 345 67 => phone number harilala.rasoanaivo@telma.mg => email 501-02-1234 => Social Security Number ```