ppo-LunarLander-v2 / config.json
uriMen's picture
Upload PPO LunarLander-v2 trained agent
88aa379 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79f043ff6a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79f043ff6b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79f043ff6b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79f043ff6c20>", "_build": "<function ActorCriticPolicy._build at 0x79f043ff6cb0>", "forward": "<function ActorCriticPolicy.forward at 0x79f043ff6d40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79f043ff6dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79f043ff6e60>", "_predict": "<function ActorCriticPolicy._predict at 0x79f043ff6ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79f043ff6f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79f043ff7010>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79f043ff70a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79f04417f040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731272138691853596, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMYRT2u7Y+6VEoXuC2yHrMQfMA6fYUvNwAAgD8AAIA/M8OPvRRwgrqtrEQ7KfdvNkamfroIWl81AACAPwAAgD86eTC+s9K+Pr7igz0caoG+KJWHvZzvsLwAAAAAAAAAAJpkJr2Fy7W51KIzOEZXMjPUXSA7M9tStwAAgD8AAIA/zbS/POwJnrmyVYA5FHW8NFFvPrvTa5e4AACAPwAAgD9ms+K9KXBPupHXjjmK1f00KlcQOqsMpLgAAIA/AACAP2beaL1IN6e6SDHNt4a1zbK45p46o+TrNgAAgD8AAIA/5hZUvfZ4frobT+Y5XJXtNKl3ALvAQAa5AACAPwAAgD+AV9g99rQ5uqJjTLfsJV61wMeKuk0PdDYAAAAAAACAP6bXk71ITYu6Au/euuweE7Z5+Qk7/jMBOgAAgD8AAIA/s177PVi3hD39i7e98g9YvuHZ9LwoxVi9AAAAAAAAAAAaZrC99gAeuj3AqbpWjSO2xJRwO0lvwzkAAIA/AACAP40O3b3BBIK8Zzq2PJ7dpLzTBZ07eMG3PAAAgD8AAAAAmlnyOlzTZboeG6I3ohCdMt7gbrq2qb22AACAPwAAgD/Npmq8UqDHuRtFWbqhUYa1hDJzOttvfTkAAIA/AACAP+B/Pr6fjYw/nWoDv4QJyb7UTwu+4kCCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGEHCI1tO22MAWyUTegDjAF0lEdApfNrqhUR4HV9lChoBkdAXt+aZx7zCmgHTegDaAhHQKX4acCo0hx1fZQoaAZHQGXjtDD0lJJoB03oA2gIR0Cl+WTz3AVPdX2UKGgGR0BlTN+Zw4sFaAdN6ANoCEdApfnmqLjxTnV9lChoBkdAYqwB8QZn+WgHTegDaAhHQKX5/Q1JlJ91fZQoaAZHQGVcBLoOhCdoB03oA2gIR0Cl+ykiliz+dX2UKGgGR0BfrhbnoxHoaAdN6ANoCEdApf6p0fYBeXV9lChoBkdAZq5FfiPyTmgHTegDaAhHQKX+zmapgkV1fZQoaAZHQGFKNIbwSapoB03oA2gIR0CmAekvboKVdX2UKGgGR0BkksbzbvgFaAdN6ANoCEdApgjftQbdanV9lChoBkdAZOIR5kbxVmgHTegDaAhHQKYL88EFGG51fZQoaAZHQGAgrRKHwgFoB03oA2gIR0CmFcLvb48EdX2UKGgGR0BlnCNjslcAaAdN6ANoCEdAphcom7aqTHV9lChoBkdAY0IuCf6Gg2gHTegDaAhHQKYXlMqz7dl1fZQoaAZHQGXO80+C9RJoB03oA2gIR0CmGRgAIY3vdX2UKGgGR0Biq6dhAnlXaAdN6ANoCEdAphltl7MPjHV9lChoBkdAYaG2GZeAu2gHTegDaAhHQKYaHk3CKrJ1fZQoaAZHQE37A+pwS8JoB0vcaAhHQKYbklhPTG51fZQoaAZHQFpFcUM5OrRoB03oA2gIR0CmHwrS3LFGdX2UKGgGR0BlB0bcXWOIaAdN6ANoCEdApiAxe7cwg3V9lChoBkdAY/MxIJ7b+WgHTegDaAhHQKYg1X0XgtR1fZQoaAZHQGImY8lolD5oB03oA2gIR0CmIO5QHiWFdX2UKGgGR0BiuYVIqbz9aAdN6ANoCEdApiJvY+Sr53V9lChoBkdAQLngaWHDaWgHTQYBaAhHQKYjzAyEcsF1fZQoaAZHQHIBLcfvF3poB03WAWgIR0CmJSms3hn8dX2UKGgGR0BjAUSIxgy/aAdN6ANoCEdApiYeKVII4XV9lChoBkdAYMDOARTS9mgHTegDaAhHQKYmPpaA4GV1fZQoaAZHQGW0WvStvGZoB03oA2gIR0CmKR2oNutPdX2UKGgGR0BiRWwiaAnVaAdN6ANoCEdApi8Ye3hGY3V9lChoBkdAYybp4bCJoGgHTegDaAhHQKYx6k8A7xN1fZQoaAZHQGUhSJTER8NoB03oA2gIR0CmPsxODaoNdX2UKGgGR0BiRJdhRZU2aAdN6ANoCEdApkEaI+GGmHV9lChoBkdAYc8CeVcD82gHTegDaAhHQKZBhVlwtJ51fZQoaAZHQGcpjaoMrmRoB03oA2gIR0CmQl/W+XZ5dX2UKGgGR0Bg/rVOKwY+aAdN6ANoCEdApkgbBj4Ho3V9lChoBkdAYFgMG5c1O2gHTegDaAhHQKZJI47zTWp1fZQoaAZHQGVTiONo8IRoB03oA2gIR0CmSa5jQRf4dX2UKGgGR0Bi82uoxYaHaAdN6ANoCEdApknGHDaXbHV9lChoBkdAcolPiT+vQmgHTb0BaAhHQKZJ7ymygPF1fZQoaAZHQGFIYmLLpzNoB03oA2gIR0CmSubnxJ/YdX2UKGgGR0BgS5lnRLK3aAdN6ANoCEdApkvszwc5sHV9lChoBkdAZJ0XpnpSrGgHTegDaAhHQKZNP6hQFcJ1fZQoaAZHQGXkt7jT8YRoB03oA2gIR0CmTjqWTot+dX2UKGgGR0BkfT0z0pVkaAdN6ANoCEdApk5ZnJ1aGHV9lChoBkdAY+yvh60IC2gHTegDaAhHQKZRONgBtDV1fZQoaAZHQF/KdX1anrJoB03oA2gIR0CmWDMwL3K0dX2UKGgGR0BjdLXJ5mh/aAdN6ANoCEdApmZFuNxVAHV9lChoBkdAYmBo/zJ6p2gHTegDaAhHQKZogACGN711fZQoaAZHQGQ+5hBqsU9oB03oA2gIR0CmaOjBl+VkdX2UKGgGR0Bkxc4iosI3aAdN6ANoCEdApmmtz8xbjnV9lChoBkdAYh6clPacqmgHTegDaAhHQKZwQhEjPfN1fZQoaAZHQGJ+287IT5BoB03oA2gIR0CmcWyo4uK5dX2UKGgGR0Bg87JQtSQ6aAdN6ANoCEdApnHqPuG9H3V9lChoBkdAZoZb/wRXfmgHTegDaAhHQKZyABTXJ5p1fZQoaAZHQGKqJZfUnXxoB03oA2gIR0CmcirDhtLtdX2UKGgGR0BiFhBPbfxdaAdN6ANoCEdApnMp5s0pE3V9lChoBkdAZy0l67dzn2gHTegDaAhHQKZ0JDjzZpV1fZQoaAZHQGZSeEqUeMhoB03oA2gIR0CmdWMcQyyldX2UKGgGR0Bio7x5LRKIaAdN6ANoCEdApnZFWp6yB3V9lChoBkdAZbFS1E3KjmgHTegDaAhHQKZ2YW9DhLp1fZQoaAZHQGftrAP/aQFoB03oA2gIR0CmeRkYwZfldX2UKGgGR0Bht4RAbADaaAdN6ANoCEdApn7O3F1jiHV9lChoBkdAZMKvxpcopmgHTegDaAhHQKaOYGs3hn91fZQoaAZHQHHA0kB0ZFZoB03ZA2gIR0CmkC8JD3M7dX2UKGgGR0BbYynk1dgOaAdN6ANoCEdAppEIZ/CqInV9lChoBkdAcWyPQv6CUWgHTc4DaAhHQKaRGE9t/F11fZQoaAZHQHBh2fkFOfxoB025AmgIR0CmlOAjIJZ4dX2UKGgGR0Bxy9og3cYZaAdNzQFoCEdAppbcCPp6hXV9lChoBkdAZEUwwj+rEWgHTegDaAhHQKaXH/4qPOp1fZQoaAZHQGFUxRl6JIloB03oA2gIR0CmmABVMmF8dX2UKGgGR0BgH6R6nivQaAdN6ANoCEdApph2+49X93V9lChoBkdAYlp+bVjI72gHTegDaAhHQKaYitPHktF1fZQoaAZHQGbkmnGbTc9oB03oA2gIR0CmmLDjzZpSdX2UKGgGR0BkciDh99c9aAdN6ANoCEdAppmZHbypaXV9lChoBkdAYpHgNwzch2gHTegDaAhHQKaafRnezld1fZQoaAZHQGb/vHDJlrdoB03oA2gIR0Cmm5lpfx+bdX2UKGgGR0BnZkVzp5eJaAdN6ANoCEdAppx31pTMq3V9lChoBkdAYkCYF7laKWgHTegDaAhHQKaf0m1IAfd1fZQoaAZHQGOrcynDR+loB03oA2gIR0CmrKcrI5o5dX2UKGgGR0BgiQQnQY1paAdN6ANoCEdAprc5TwUg0XV9lChoBkdAYAkn5zo2XWgHTegDaAhHQKa4G4lQdjp1fZQoaAZHQGKPxn3+MqBoB03oA2gIR0CmuC8tXgccdX2UKGgGR0BwNLkp7TlUaAdNQwJoCEdApr0Xxri2lXV9lChoBkdAYUlqKxcE/2gHTegDaAhHQKa9XX5nDix1fZQoaAZHQGempudf9gpoB03oA2gIR0Cmv0asySFHdX2UKGgGR0BgTgxk/bCaaAdN6ANoCEdApr+BArxy4nV9lChoBkdAb5UBJ7LMcWgHTccDaAhHQKbAG/LTx5N1fZQoaAZHQGKgu9nK4hFoB03oA2gIR0CmwELftQbddX2UKGgGR0BlK08gZCOWaAdN6ANoCEdApsCfOW0JGHV9lChoBkdAZ2Xx0+1SfmgHTegDaAhHQKbAsI42jwh1fZQoaAZHQF4/NlyzXz1oB03oA2gIR0CmwZ+r2g3+dX2UKGgGR0BhctJjDsMRaAdN6ANoCEdApsJz9S/CZXV9lChoBkdAYrCePJaJRGgHTegDaAhHQKbDgrNnoPl1fZQoaAZHQD/KtRvWH1xoB0vGaAhHQKbDiS/0ulJ1fZQoaAZHQHIxdx2jfvZoB02ZAWgIR0Cmw7JA2Q4kdX2UKGgGR0Bk66jgydnTaAdN6ANoCEdApsQ3+fh/AnV9lChoBkdAbXa7OmixmmgHTbUBaAhHQKbKvZyuIRB1fZQoaAZHQG9mw7kn1FpoB01RAWgIR0Cmy+h9b5dodX2UKGgGR0BumOPLgXMyaAdNggFoCEdAps2baM72c3V9lChoBkdAZIBjghr302gHTegDaAhHQKbRAbMHKOl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}