File size: 2,985 Bytes
9bc5971 320996e 9bc5971 2b584c3 9bc5971 2b584c3 9bc5971 2b584c3 9bc5971 ef1187e 9bc5971 ef1187e 9bc5971 2b584c3 9bc5971 2b584c3 9bc5971 320996e 9bc5971 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: segformer-class-classWeights-augmentation
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9655172413793104
- name: F1
type: f1
value: 0.964683592269799
- name: Precision
type: precision
value: 0.9674329501915708
- name: Recall
type: recall
value: 0.9655172413793104
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-class-classWeights-augmentation
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1453
- Accuracy: 0.9655
- F1: 0.9647
- Precision: 0.9674
- Recall: 0.9655
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 0.89 | 6 | 0.0454 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.1558 | 1.93 | 13 | 0.0816 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
| 0.1727 | 2.96 | 20 | 0.0775 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
| 0.1727 | 4.0 | 27 | 0.0443 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
| 0.1299 | 4.89 | 33 | 0.0535 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
| 0.1808 | 5.93 | 40 | 0.0298 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
| 0.1808 | 6.96 | 47 | 0.0195 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.1406 | 8.0 | 54 | 0.0526 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
| 0.1193 | 8.89 | 60 | 0.1453 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|