uttam333's picture
End of training
1b9a513
|
raw
history blame
7.23 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
model-index:
  - name: layoutlm-custom_no_text
    results: []

layoutlm-custom_no_text

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1523
  • Noise: {'precision': 0.8811544991511036, 'recall': 0.8994800693240901, 'f1': 0.8902229845626072, 'number': 577}
  • Signal: {'precision': 0.8675721561969439, 'recall': 0.8856152512998267, 'f1': 0.8765008576329331, 'number': 577}
  • Overall Precision: 0.8744
  • Overall Recall: 0.8925
  • Overall F1: 0.8834
  • Overall Accuracy: 0.9664

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Noise Signal Overall Precision Overall Recall Overall F1 Overall Accuracy
0.3886 1.0 18 0.2452 {'precision': 0.6213235294117647, 'recall': 0.58578856152513, 'f1': 0.6030330062444246, 'number': 577} {'precision': 0.6323529411764706, 'recall': 0.5961871750433275, 'f1': 0.6137377341659233, 'number': 577} 0.6268 0.5910 0.6084 0.8992
0.1673 2.0 36 0.1441 {'precision': 0.7667269439421338, 'recall': 0.7348353552859619, 'f1': 0.7504424778761062, 'number': 577} {'precision': 0.7450271247739603, 'recall': 0.7140381282495667, 'f1': 0.7292035398230089, 'number': 577} 0.7559 0.7244 0.7398 0.9356
0.0959 3.0 54 0.1168 {'precision': 0.8131487889273357, 'recall': 0.8145580589254766, 'f1': 0.8138528138528138, 'number': 577} {'precision': 0.7941176470588235, 'recall': 0.7954939341421143, 'f1': 0.7948051948051947, 'number': 577} 0.8036 0.8050 0.8043 0.9510
0.0622 4.0 72 0.1166 {'precision': 0.8402061855670103, 'recall': 0.8474870017331022, 'f1': 0.8438308886971526, 'number': 577} {'precision': 0.8333333333333334, 'recall': 0.8405545927209706, 'f1': 0.8369283865401207, 'number': 577} 0.8368 0.8440 0.8404 0.9591
0.0424 5.0 90 0.1325 {'precision': 0.8476027397260274, 'recall': 0.8578856152512998, 'f1': 0.8527131782945737, 'number': 577} {'precision': 0.839041095890411, 'recall': 0.8492201039861352, 'f1': 0.8440999138673558, 'number': 577} 0.8433 0.8536 0.8484 0.9586
0.031 6.0 108 0.1167 {'precision': 0.8720136518771331, 'recall': 0.8856152512998267, 'f1': 0.878761822871883, 'number': 577} {'precision': 0.8583617747440273, 'recall': 0.8717504332755632, 'f1': 0.8650042992261393, 'number': 577} 0.8652 0.8787 0.8719 0.9628
0.0213 7.0 126 0.1339 {'precision': 0.8610634648370498, 'recall': 0.8700173310225303, 'f1': 0.8655172413793105, 'number': 577} {'precision': 0.855917667238422, 'recall': 0.8648180242634316, 'f1': 0.860344827586207, 'number': 577} 0.8585 0.8674 0.8629 0.9608
0.0159 8.0 144 0.1335 {'precision': 0.8692699490662139, 'recall': 0.8873483535528596, 'f1': 0.8782161234991425, 'number': 577} {'precision': 0.8590831918505942, 'recall': 0.8769497400346621, 'f1': 0.8679245283018868, 'number': 577} 0.8642 0.8821 0.8731 0.9630
0.0117 9.0 162 0.1489 {'precision': 0.8686006825938567, 'recall': 0.8821490467937608, 'f1': 0.8753224419604471, 'number': 577} {'precision': 0.8600682593856656, 'recall': 0.8734835355285961, 'f1': 0.8667239896818572, 'number': 577} 0.8643 0.8778 0.8710 0.9622
0.011 10.0 180 0.1593 {'precision': 0.8623063683304647, 'recall': 0.8682842287694974, 'f1': 0.8652849740932642, 'number': 577} {'precision': 0.8519793459552496, 'recall': 0.8578856152512998, 'f1': 0.854922279792746, 'number': 577} 0.8571 0.8631 0.8601 0.9600
0.0094 11.0 198 0.1336 {'precision': 0.8896434634974533, 'recall': 0.9081455805892548, 'f1': 0.8987993138936535, 'number': 577} {'precision': 0.8760611205432938, 'recall': 0.8942807625649913, 'f1': 0.8850771869639794, 'number': 577} 0.8829 0.9012 0.8919 0.9686
0.0066 12.0 216 0.1357 {'precision': 0.8928571428571429, 'recall': 0.9098786828422877, 'f1': 0.9012875536480687, 'number': 577} {'precision': 0.8792517006802721, 'recall': 0.8960138648180243, 'f1': 0.8875536480686695, 'number': 577} 0.8861 0.9029 0.8944 0.9692
0.0072 13.0 234 0.1528 {'precision': 0.8830508474576271, 'recall': 0.902946273830156, 'f1': 0.8928877463581834, 'number': 577} {'precision': 0.8711864406779661, 'recall': 0.8908145580589255, 'f1': 0.8808911739502999, 'number': 577} 0.8771 0.8969 0.8869 0.9670
0.0061 14.0 252 0.1552 {'precision': 0.8779661016949153, 'recall': 0.8977469670710572, 'f1': 0.8877463581833762, 'number': 577} {'precision': 0.8661016949152542, 'recall': 0.8856152512998267, 'f1': 0.8757497857754927, 'number': 577} 0.8720 0.8917 0.8817 0.9664
0.0054 15.0 270 0.1523 {'precision': 0.8811544991511036, 'recall': 0.8994800693240901, 'f1': 0.8902229845626072, 'number': 577} {'precision': 0.8675721561969439, 'recall': 0.8856152512998267, 'f1': 0.8765008576329331, 'number': 577} 0.8744 0.8925 0.8834 0.9664

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0