uukuguy commited on
Commit
a243514
1 Parent(s): 094a068

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -1
README.md CHANGED
@@ -1,3 +1,43 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ library_name: transformers
5
+ pipeline_tag: text-generation
6
+ datasets:
7
+ - jondurbin/airoboros-2.2
8
+ - Open-Orca/OpenOrca
9
+ - garage-bAInd/Open-Platypus
10
+ - WizardLM/WizardLM_evol_instruct_V2_196k
11
+ - TokenBender/python_eval_instruct_51k
12
+ tags:
13
+ - llama-2
14
+ - code
15
+ license: llama2
16
+ model-index:
17
+ - name: SpeechlessCoder
18
+ results:
19
+ - task:
20
+ type: text-generation
21
+ dataset:
22
+ type: openai_humaneval
23
+ name: HumanEval
24
+ metrics:
25
+ - name: pass@1
26
+ type: pass@1
27
+ value: 50.0
28
+ verified: false
29
  ---
30
+
31
+ <p><h1> speechless-sparsetral-16x7b-MoE </h1></p>
32
+
33
+ speechless-sparsetral-16x7b-MoE is the MoE upgraded version of [speechless-code-mistral-7b-v1.0](https://huggingface.co/uukuguy/speechless-code-mistral-7b-v1.0). The MoE fine-tuning adopts [Parameter-Efficient Sparsity Crafting (PESC)](https://arxiv.org/abs/2401.02731), which is an efficient fine-tuning architecture that uses LoRA modules as expert models, similar to the concept of [multi-loras](https://github.com/uukuguy/multi_loras).
34
+
35
+ Specifically, Mistral-7B-0.1 is used as the base model, with 16 experts and 4 expert outputs selected for inference. The fine-tuning dataset includes codefuse-ai/Evol-Instruction-66k to enhance the model's code generation ability. The specific datasets are as follows:
36
+
37
+ - jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 23,462 samples.
38
+ - Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 74,440 samples.
39
+ - garage-bAInd/Open-Platypus: 100%, 24,926 samples.
40
+ - WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,185 samples
41
+ - TokenBender/python_eval_instruct_51k: “python” in output .40,309 samples
42
+ - Spider: 8,659 samples
43
+ - codefuse-ai/Evol-Instruction-66k: 100%, 66,862 samples