metadata
license: cc-by-nc-4.0
language:
- hu
metrics:
- accuracy
- f1
model-index:
- name: Hun_RoBERTa_large_Plain
results:
- task:
type: text-classification
metrics:
- type: accuracy
value: 0.79
- type: f1
value: 0.79
widget:
- text: >-
A tanúsítvány meghatározott adatainak a 2008/118/EK irányelv IV. fejezete
szerinti szállításához szükséges adminisztratív okmányban...
example_title: Incomprehensible
- text: >-
Az AEO-engedély birtokosainak listáján – keresésre – megjelenő
információk: az engedélyes neve, az engedélyt kibocsátó ország...
example_title: Comprehensible
Model description
Cased fine-tuned XLM-RoBERTa-large model for Hungarian, trained to classify sentences based on their Plain Language properties.
Intended uses & limitations
The model is designed to classify sentences as either "comprehensible" or "not comprehensible" (according to Plain Language guidelines):
- Label_0 - "comprehensible" - The sentence is in Plain Language.
- Label_1 - "not comprehensible" - The sentence is not in Plain Language.
Training
Fine-tuned version of the original xlm-roberta-large
model, trained on a dataset of Hungarian legal and administrative texts.
Eval results
Class | Precision | Recall | F-Score |
---|---|---|---|
Comprehensible / Label_0 | 0.76 | 0.86 | 0.81 |
Not comprehensible / Label_1 | 0.83 | 0.72 | 0.77 |
accuracy | 0.79 | ||
macro avg | 0.80 | 0.79 | 0.79 |
weighted avg | 0.79 | 0.79 | 0.79 |
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("uvegesistvan/Hun_RoBERTa_large_Plain")
model = AutoModelForSequenceClassification.from_pretrained("uvegesistvan/Hun_RoBERTa_large_Plain")
Citation:
@PhDThesis{ Uveges:2024, author = {{"U}veges, Istv{'a}n}, title = {K{"o}z{'e}rthet{"o} és automatiz{'a}ci{'o} - k{'i}s{'e}rletek a jog, term{'e}szetesnyelv-feldolgoz{'a}s {'e}s informatika hat{'a}r{'a}n.}, year = {2024}, school = {Szegedi Tudom{'a}nyegyetem} }