File size: 5,057 Bytes
1f76eeb
ffc620e
1f76eeb
 
 
 
327b905
6eaa67f
327b905
ffc620e
 
 
6eaa67f
 
ffc620e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f76eeb
10e15d6
6eaa67f
 
 
 
 
 
027e2fd
10e15d6
 
 
043d4ec
f60758c
1069abb
 
 
 
1f76eeb
 
 
 
 
 
 
f60758c
1f76eeb
 
 
 
327b905
1f76eeb
 
 
 
 
 
 
 
 
 
327b905
1f76eeb
 
 
 
aaaacf5
 
ffc620e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
---
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
- qwen2
- qwen2.5
- dpo
base_model:
- v000000/Qwen2.5-14B-Gutenberg-1e-Delta
- Qwen/Qwen2.5-14B-Instruct
datasets:
- jondurbin/gutenberg-dpo-v0.1
model-index:
- name: Qwen2.5-14B-Gutenberg-Instruct-Slerpeno
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 48.55
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 49.74
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 19.71
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 15.21
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 18.43
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 48.68
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno
      name: Open LLM Leaderboard
---

# Qwen2.5-14B-Gutenberg-Instruct-Slerpeno

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f74b6e6389380c77562762/PgoZ5eutiHDfBmuoBuDO9.png)

--------------------------------------------------------------------------

## GGUF from mradermacher!

* [GGUF static](https://huggingface.co/mradermacher/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno-GGUF)

* [GGUF Imatrix](https://huggingface.co/mradermacher/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno-i1-GGUF)

## GGUF from QuantFactory!

* [GGUF static](https://huggingface.co/QuantFactory/Qwen2.5-14B-Gutenberg-Instruct-Slerpeno-GGUF)

# merge

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the SLERP merge method. (*sophosympatheia gradient*)

### Models Merged

The following models were included in the merge:
* [v000000/Qwen2.5-14B-Gutenberg-1e-Delta](https://huggingface.co/v000000/Qwen2.5-14B-Gutenberg-1e-Delta)
* [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
models:
  - model: Qwen/Qwen2.5-14B-Instruct
merge_method: slerp
base_model: v000000/Qwen2.5-14B-Gutenberg-1e-Delta
parameters:
  t:
    - value: [0, 0, 0.3, 0.4, 0.5, 0.6, 0.5, 0.4, 0.3, 0, 0]
dtype: bfloat16
```

*The idea here is that Gutenberg DPO stays in the output/input 100% while merging smoothly with the base instruct model in the deeper layers to heal loss and increase intelligence.*
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_v000000__Qwen2.5-14B-Gutenberg-Instruct-Slerpeno)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |33.39|
|IFEval (0-Shot)    |48.55|
|BBH (3-Shot)       |49.74|
|MATH Lvl 5 (4-Shot)|19.71|
|GPQA (0-shot)      |15.21|
|MuSR (0-shot)      |18.43|
|MMLU-PRO (5-shot)  |48.68|