--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - voxpopuli/fi model-index: - name: speecht5_finetuned_voxpopuli_fi_lim_speakrs results: [] --- # speecht5_finetuned_voxpopuli_fi_lim_speakrs This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli/fi dataset. It achieves the following results on the evaluation set: - Loss: 0.4429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 10 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5587 | 1.25 | 500 | 0.4937 | | 0.5176 | 2.5 | 1000 | 0.4703 | | 0.4983 | 3.75 | 1500 | 0.4594 | | 0.5016 | 5.0 | 2000 | 0.4584 | | 0.4797 | 6.25 | 2500 | 0.4539 | | 0.4845 | 7.5 | 3000 | 0.4512 | | 0.4882 | 8.75 | 3500 | 0.4489 | | 0.4721 | 10.0 | 4000 | 0.4469 | | 0.4829 | 11.25 | 4500 | 0.4456 | | 0.4974 | 12.5 | 5000 | 0.4457 | | 0.4776 | 13.75 | 5500 | 0.4442 | | 0.4866 | 15.0 | 6000 | 0.4441 | | 0.4752 | 16.25 | 6500 | 0.4430 | | 0.4765 | 17.5 | 7000 | 0.4430 | | 0.4668 | 18.75 | 7500 | 0.4431 | | 0.4823 | 20.0 | 8000 | 0.4429 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3