--- license: other base_model: nvidia/mit-b5 tags: - generated_from_trainer model-index: - name: segcrack9k_conglomerate_segformer_aug results: [] --- # segcrack9k_conglomerate_segformer_aug This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0362 - Mean Iou: 0.3412 - Mean Accuracy: 0.6823 - Overall Accuracy: 0.6823 - Accuracy Background: nan - Accuracy Crack: 0.6823 - Iou Background: 0.0 - Iou Crack: 0.6823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:| | 0.0323 | 0.14 | 1000 | 0.0445 | 0.3573 | 0.7146 | 0.7146 | nan | 0.7146 | 0.0 | 0.7146 | | 0.0222 | 0.27 | 2000 | 0.0394 | 0.3591 | 0.7181 | 0.7181 | nan | 0.7181 | 0.0 | 0.7181 | | 0.0335 | 0.41 | 3000 | 0.0404 | 0.2907 | 0.5813 | 0.5813 | nan | 0.5813 | 0.0 | 0.5813 | | 0.013 | 0.54 | 4000 | 0.0384 | 0.3244 | 0.6489 | 0.6489 | nan | 0.6489 | 0.0 | 0.6489 | | 0.0159 | 0.68 | 5000 | 0.0382 | 0.3088 | 0.6176 | 0.6176 | nan | 0.6176 | 0.0 | 0.6176 | | 0.0608 | 0.81 | 6000 | 0.0366 | 0.3251 | 0.6502 | 0.6502 | nan | 0.6502 | 0.0 | 0.6502 | | 0.1738 | 0.95 | 7000 | 0.0362 | 0.3412 | 0.6823 | 0.6823 | nan | 0.6823 | 0.0 | 0.6823 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3