File size: 3,464 Bytes
0c84760 4f9f079 0c84760 ba622e3 0c84760 ba622e3 0c84760 ba622e3 0c84760 ba622e3 8c4604f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
base_model: unsloth/meta-llama-3.1-8b-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
---
Indian Legal Assistant: A LLaMA-based Model for Indian Legal Text Generation
This repository contains information and code for using the Indian Legal Assistant, a LLaMA-based model finetuned on Indian legal texts. This model is designed to assist with various legal tasks and queries related to Indian law.
Table of Contents
Model Description
Model Details
Installation
Usage
Evaluation
Contributing
License
Model Description
The Indian Legal Assistant is a text generation model specifically trained to understand and generate text related to Indian law. It can be used for tasks such as:
Legal question answering
Case summarization
Legal document analysis
Statute interpretation
Model Details
Model Name: Indian_Legal_Assitant
Developer: varma007ut
Model Size: 8.03B parameters
Architecture: LLaMA
Language: English
License: Apache 2.0
Hugging Face Repo: varma007ut/Indian_Legal_Assitant
Installation
To use this model, you'll need to install the required libraries:
bashCopypip install transformers torch
# For GGUF support
pip install llama-cpp-python
Usage
There are several ways to use the Indian Legal Assistant model:
1. Using Hugging Face Pipeline
pythonCopyfrom transformers import pipeline
pipe = pipeline("text-generation", model="varma007ut/Indian_Legal_Assitant")
prompt = "Summarize the key points of the Indian Contract Act, 1872:"
result = pipe(prompt, max_length=200)
print(result[0]['generated_text'])
2. Using Hugging Face Transformers directly
pythonCopyfrom transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("varma007ut/Indian_Legal_Assitant")
model = AutoModelForCausalLM.from_pretrained("varma007ut/Indian_Legal_Assitant")
prompt = "What are the fundamental rights in the Indian Constitution?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
print(tokenizer.decode(outputs[0]))
3. Using GGUF format with llama-cpp-python
pythonCopyfrom llama_cpp import Llama
llm = Llama.from_pretrained(
repo_id="varma007ut/Indian_Legal_Assitant",
filename="ggml-model-q4_0.gguf", # Replace with the actual GGUF filename if different
)
response = llm.create_chat_completion(
messages = [
{
"role": "user",
"content": "Explain the concept of judicial review in India."
}
]
)
print(response['choices'][0]['message']['content'])
4. Using Inference Endpoints
This model supports Hugging Face Inference Endpoints. You can deploy the model and use it via API calls. Refer to the Hugging Face documentation for more information on setting up and using Inference Endpoints.
Evaluation
To evaluate the model's performance:
Prepare a test set of Indian legal queries or tasks.
Use standard NLP evaluation metrics such as perplexity, BLEU score, or task-specific metrics.
Example using BLEU score:
pythonCopyfrom datasets import load_metric
bleu = load_metric("bleu")
predictions = model.generate(encoded_input)
results = bleu.compute(predictions=predictions, references=references)
Contributing
We welcome contributions to improve the model or extend its capabilities. Please see our Contributing Guidelines for more details.
License
This project is licensed under the Apache 2.0 License. See the LICENSE file for details.
|