varma007ut
commited on
Commit
•
b1f1f6e
1
Parent(s):
ba622e3
Update README.md
Browse files
README.md
CHANGED
@@ -11,11 +11,10 @@ tags:
|
|
11 |
- trl
|
12 |
- sft
|
13 |
---
|
14 |
-
|
15 |
Indian Legal Assistant: A LLaMA-based Model for Indian Legal Text Generation
|
16 |
-
This repository contains information and code for
|
17 |
-
Table of Contents
|
18 |
|
|
|
19 |
Model Description
|
20 |
Model Details
|
21 |
Installation
|
@@ -23,84 +22,70 @@ Usage
|
|
23 |
Evaluation
|
24 |
Contributing
|
25 |
License
|
26 |
-
|
27 |
Model Description
|
28 |
-
The Indian Legal Assistant is a text generation model specifically trained to understand and generate text related to Indian law. It
|
29 |
|
30 |
Legal question answering
|
31 |
Case summarization
|
32 |
Legal document analysis
|
33 |
Statute interpretation
|
34 |
-
|
35 |
Model Details
|
36 |
-
|
37 |
-
Model Name: Indian_Legal_Assitant
|
38 |
Developer: varma007ut
|
39 |
Model Size: 8.03B parameters
|
40 |
Architecture: LLaMA
|
41 |
Language: English
|
42 |
License: Apache 2.0
|
43 |
-
Hugging Face
|
44 |
-
|
45 |
Installation
|
46 |
-
To use this model,
|
47 |
-
|
|
|
|
|
|
|
48 |
# For GGUF support
|
49 |
pip install llama-cpp-python
|
50 |
Usage
|
51 |
There are several ways to use the Indian Legal Assistant model:
|
|
|
52 |
1. Using Hugging Face Pipeline
|
53 |
-
|
|
|
|
|
54 |
|
55 |
-
pipe = pipeline("text-generation", model="varma007ut/
|
56 |
|
57 |
prompt = "Summarize the key points of the Indian Contract Act, 1872:"
|
58 |
result = pipe(prompt, max_length=200)
|
59 |
print(result[0]['generated_text'])
|
60 |
-
2. Using Hugging Face Transformers
|
61 |
-
|
|
|
|
|
62 |
|
63 |
-
tokenizer = AutoTokenizer.from_pretrained("varma007ut/
|
64 |
-
model = AutoModelForCausalLM.from_pretrained("varma007ut/
|
65 |
|
66 |
prompt = "What are the fundamental rights in the Indian Constitution?"
|
67 |
inputs = tokenizer(prompt, return_tensors="pt")
|
68 |
outputs = model.generate(**inputs, max_length=200)
|
69 |
print(tokenizer.decode(outputs[0]))
|
70 |
-
3. Using GGUF
|
71 |
-
|
|
|
|
|
72 |
|
73 |
llm = Llama.from_pretrained(
|
74 |
-
repo_id="varma007ut/
|
75 |
filename="ggml-model-q4_0.gguf", # Replace with the actual GGUF filename if different
|
76 |
)
|
77 |
|
78 |
response = llm.create_chat_completion(
|
79 |
-
messages
|
80 |
-
{
|
81 |
-
"role": "user",
|
82 |
-
"content": "Explain the concept of judicial review in India."
|
83 |
-
}
|
84 |
]
|
85 |
)
|
86 |
|
87 |
print(response['choices'][0]['message']['content'])
|
88 |
4. Using Inference Endpoints
|
89 |
This model supports Hugging Face Inference Endpoints. You can deploy the model and use it via API calls. Refer to the Hugging Face documentation for more information on setting up and using Inference Endpoints.
|
90 |
-
Evaluation
|
91 |
-
To evaluate the model's performance:
|
92 |
-
|
93 |
-
Prepare a test set of Indian legal queries or tasks.
|
94 |
-
Use standard NLP evaluation metrics such as perplexity, BLEU score, or task-specific metrics.
|
95 |
-
|
96 |
-
Example using BLEU score:
|
97 |
-
pythonCopyfrom datasets import load_metric
|
98 |
-
|
99 |
-
bleu = load_metric("bleu")
|
100 |
-
predictions = model.generate(encoded_input)
|
101 |
-
results = bleu.compute(predictions=predictions, references=references)
|
102 |
-
Contributing
|
103 |
-
We welcome contributions to improve the model or extend its capabilities. Please see our Contributing Guidelines for more details.
|
104 |
-
License
|
105 |
-
This project is licensed under the Apache 2.0 License. See the LICENSE file for details.
|
106 |
-
|
|
|
11 |
- trl
|
12 |
- sft
|
13 |
---
|
|
|
14 |
Indian Legal Assistant: A LLaMA-based Model for Indian Legal Text Generation
|
15 |
+
This repository contains information and code for the Indian Legal Assistant, a LLaMA-based model finetuned on Indian legal texts. The model is designed to assist with various legal tasks and queries related to Indian law.
|
|
|
16 |
|
17 |
+
Table of Contents
|
18 |
Model Description
|
19 |
Model Details
|
20 |
Installation
|
|
|
22 |
Evaluation
|
23 |
Contributing
|
24 |
License
|
|
|
25 |
Model Description
|
26 |
+
The Indian Legal Assistant is a text generation model specifically trained to understand and generate text related to Indian law. It is suitable for various legal tasks such as:
|
27 |
|
28 |
Legal question answering
|
29 |
Case summarization
|
30 |
Legal document analysis
|
31 |
Statute interpretation
|
|
|
32 |
Model Details
|
33 |
+
Model Name: Indian_Legal_Assistant
|
|
|
34 |
Developer: varma007ut
|
35 |
Model Size: 8.03B parameters
|
36 |
Architecture: LLaMA
|
37 |
Language: English
|
38 |
License: Apache 2.0
|
39 |
+
Hugging Face Repository: varma007ut/Indian_Legal_Assistant
|
|
|
40 |
Installation
|
41 |
+
To use this model, install the required libraries:
|
42 |
+
|
43 |
+
bash
|
44 |
+
Copy code
|
45 |
+
pip install transformers torch
|
46 |
# For GGUF support
|
47 |
pip install llama-cpp-python
|
48 |
Usage
|
49 |
There are several ways to use the Indian Legal Assistant model:
|
50 |
+
|
51 |
1. Using Hugging Face Pipeline
|
52 |
+
python
|
53 |
+
Copy code
|
54 |
+
from transformers import pipeline
|
55 |
|
56 |
+
pipe = pipeline("text-generation", model="varma007ut/Indian_Legal_Assistant")
|
57 |
|
58 |
prompt = "Summarize the key points of the Indian Contract Act, 1872:"
|
59 |
result = pipe(prompt, max_length=200)
|
60 |
print(result[0]['generated_text'])
|
61 |
+
2. Using Hugging Face Transformers Directly
|
62 |
+
python
|
63 |
+
Copy code
|
64 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
65 |
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained("varma007ut/Indian_Legal_Assistant")
|
67 |
+
model = AutoModelForCausalLM.from_pretrained("varma007ut/Indian_Legal_Assistant")
|
68 |
|
69 |
prompt = "What are the fundamental rights in the Indian Constitution?"
|
70 |
inputs = tokenizer(prompt, return_tensors="pt")
|
71 |
outputs = model.generate(**inputs, max_length=200)
|
72 |
print(tokenizer.decode(outputs[0]))
|
73 |
+
3. Using GGUF Format with llama-cpp-python
|
74 |
+
python
|
75 |
+
Copy code
|
76 |
+
from llama_cpp import Llama
|
77 |
|
78 |
llm = Llama.from_pretrained(
|
79 |
+
repo_id="varma007ut/Indian_Legal_Assistant",
|
80 |
filename="ggml-model-q4_0.gguf", # Replace with the actual GGUF filename if different
|
81 |
)
|
82 |
|
83 |
response = llm.create_chat_completion(
|
84 |
+
messages=[
|
85 |
+
{"role": "user", "content": "Explain the concept of judicial review in India."}
|
|
|
|
|
|
|
86 |
]
|
87 |
)
|
88 |
|
89 |
print(response['choices'][0]['message']['content'])
|
90 |
4. Using Inference Endpoints
|
91 |
This model supports Hugging Face Inference Endpoints. You can deploy the model and use it via API calls. Refer to the Hugging Face documentation for more information on setting up and using Inference Endpoints.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|