File size: 1,806 Bytes
d0966dd
 
 
 
 
 
 
 
 
 
 
 
 
f67ac82
9a20392
f67ac82
 
 
 
 
 
9a20392
f67ac82
9a20392
f67ac82
9a20392
f67ac82
9a20392
f67ac82
 
9a20392
f67ac82
9a20392
f67ac82
 
 
 
5b7116a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
base_model: unsloth/meta-llama-3.1-8b-bnb-4bit
language:
  - en
license: apache-2.0
tags:
  - text-generation-inference
  - transformers
  - unsloth
  - llama
  - trl
  - sft
---
# Model README

## Model Overview

- **Model Name:** Medicine_chat
- **Base Model:** unsloth/meta-llama-3.1-8b-bnb-4bit
- **Developed by:** varma007ut
- **License:** Apache 2.0

## Description

This model is a fine-tuned version of the `unsloth/meta-llama-3.1-8b-bnb-4bit` designed specifically for text generation tasks in the medical domain. It leverages a substantial dataset of medical texts to improve its performance and relevance in generating medical-related content.

## Fine-tuning Details

- **Fine-tuned Data:** The model has been fine-tuned on medicinal data, enhancing its ability to understand and generate contextually appropriate medical text.
- **Objective:** The fine-tuning process aims to make the model proficient in medical terminology, guidelines, and general knowledge pertinent to healthcare professionals.

## Installation

To use this model, ensure you have the necessary libraries installed. You can install them using pip:

```bash
pip install transformers
## Usage

Here’s an example of how to load and use the model for text generation:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "your_model_name"  # Replace with your model's name

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Generate text
input_text = "What are the symptoms of diabetes?"
input_ids = tokenizer.encode(input_text, return_tensors='pt')

output = model.generate(input_ids, max_length=150)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

print(generated_text)