File size: 29,449 Bytes
88ff851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
---
base_model: sentence-transformers/all-MiniLM-L6-v2
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Żywot św. Stanisława
  sentences:
  - czym różni się Żywot św. Stanisława od Legendy św. Stanisława?
  - kto uczył malarstwa olimpijczyka Bronisława Czecha?
  - St. Louis Eagles
- source_sentence: Jaakow Jicchak Szapira
  sentences:
  - czym jest Kompas Sztuki?
  - z czego wykonana jest rzeźba Robotnik i kołchoźnica?
  - podczas którego soboru zostało ogłoszone chalcedońskie wyznanie wiary?
- source_sentence: Chłopiec z Nariokotome
  sentences:
  - ile wynosiła objętość mózgu chłopca z Nariokotome?
  - jaki pomnik odsłonięto we Lwowie 3 lipca 2011 roku?
  - Voyager 2 Voyager Golden Record Pale Blue Dot
- source_sentence: skąd pochodzi wino cirò?
  sentences:
  - skąd pochodzi nazwa Kotylniczy Wierch?
  - do czego współcześnie wykorzystuje się papier amate?
  - erystyka sofizmat błędy logiczno-językowe onus probandi
- source_sentence: Sen o zastrzyku Irmy
  sentences:
  - gdzie Freud spotkał Irmę we śnie o zastrzyku Irmy?
  - ile razy Srebrna Biblia była przywożona do Szwecji?
  - Voyager 2 Voyager Golden Record Pale Blue Dot
model-index:
- name: all-MiniLM-L6-v2-klej-dyk-v0.1
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 384
      type: dim_384
    metrics:
    - type: cosine_accuracy@1
      value: 0.19951923076923078
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.43028846153846156
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5384615384615384
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6225961538461539
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.19951923076923078
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.14342948717948717
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.10769230769230768
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06225961538461538
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.19951923076923078
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.43028846153846156
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5384615384615384
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6225961538461539
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4067615454626299
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3376678876678877
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3451711286911671
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.18509615384615385
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.41346153846153844
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5096153846153846
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6033653846153846
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.18509615384615385
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1378205128205128
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.10192307692307692
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06033653846153846
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.18509615384615385
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.41346153846153844
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5096153846153846
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6033653846153846
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.39112028533472887
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.32341746794871795
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3303671597529028
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.18028846153846154
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.35336538461538464
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.4423076923076923
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5192307692307693
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.18028846153846154
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.11778846153846154
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.08846153846153845
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05192307692307692
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.18028846153846154
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.35336538461538464
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.4423076923076923
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5192307692307693
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3443315125767603
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.2888621794871794
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2960334956693037
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.13701923076923078
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2644230769230769
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.32211538461538464
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.3798076923076923
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.13701923076923078
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.08814102564102563
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.06442307692307693
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.03798076923076923
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.13701923076923078
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2644230769230769
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.32211538461538464
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.3798076923076923
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2529381675019326
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.21289396367521363
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2208612925846397
      name: Cosine Map@100
---

# all-MiniLM-L6-v2-klej-dyk-v0.1

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Sen o zastrzyku Irmy',
    'gdzie Freud spotkał Irmę we śnie o zastrzyku Irmy?',
    'ile razy Srebrna Biblia była przywożona do Szwecji?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1995     |
| cosine_accuracy@3   | 0.4303     |
| cosine_accuracy@5   | 0.5385     |
| cosine_accuracy@10  | 0.6226     |
| cosine_precision@1  | 0.1995     |
| cosine_precision@3  | 0.1434     |
| cosine_precision@5  | 0.1077     |
| cosine_precision@10 | 0.0623     |
| cosine_recall@1     | 0.1995     |
| cosine_recall@3     | 0.4303     |
| cosine_recall@5     | 0.5385     |
| cosine_recall@10    | 0.6226     |
| cosine_ndcg@10      | 0.4068     |
| cosine_mrr@10       | 0.3377     |
| **cosine_map@100**  | **0.3452** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1851     |
| cosine_accuracy@3   | 0.4135     |
| cosine_accuracy@5   | 0.5096     |
| cosine_accuracy@10  | 0.6034     |
| cosine_precision@1  | 0.1851     |
| cosine_precision@3  | 0.1378     |
| cosine_precision@5  | 0.1019     |
| cosine_precision@10 | 0.0603     |
| cosine_recall@1     | 0.1851     |
| cosine_recall@3     | 0.4135     |
| cosine_recall@5     | 0.5096     |
| cosine_recall@10    | 0.6034     |
| cosine_ndcg@10      | 0.3911     |
| cosine_mrr@10       | 0.3234     |
| **cosine_map@100**  | **0.3304** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.1803    |
| cosine_accuracy@3   | 0.3534    |
| cosine_accuracy@5   | 0.4423    |
| cosine_accuracy@10  | 0.5192    |
| cosine_precision@1  | 0.1803    |
| cosine_precision@3  | 0.1178    |
| cosine_precision@5  | 0.0885    |
| cosine_precision@10 | 0.0519    |
| cosine_recall@1     | 0.1803    |
| cosine_recall@3     | 0.3534    |
| cosine_recall@5     | 0.4423    |
| cosine_recall@10    | 0.5192    |
| cosine_ndcg@10      | 0.3443    |
| cosine_mrr@10       | 0.2889    |
| **cosine_map@100**  | **0.296** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.137      |
| cosine_accuracy@3   | 0.2644     |
| cosine_accuracy@5   | 0.3221     |
| cosine_accuracy@10  | 0.3798     |
| cosine_precision@1  | 0.137      |
| cosine_precision@3  | 0.0881     |
| cosine_precision@5  | 0.0644     |
| cosine_precision@10 | 0.038      |
| cosine_recall@1     | 0.137      |
| cosine_recall@3     | 0.2644     |
| cosine_recall@5     | 0.3221     |
| cosine_recall@10    | 0.3798     |
| cosine_ndcg@10      | 0.2529     |
| cosine_mrr@10       | 0.2129     |
| **cosine_map@100**  | **0.2209** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 3,738 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 87.54 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 30.98 tokens</li><li>max: 76 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | anchor                                                                                                                      |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
  | <code>Zespół Blaua (zespół Jabsa, ang. Blau syndrome, BS) – rzadka choroba genetyczna o dziedziczeniu autosomalnym dominującym, charakteryzująca się ziarniniakowym zapaleniem stawów o wczesnym początku, zapaleniem jagodówki (uveitis) i wysypką skórną, a także kamptodaktylią.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <code>jakie choroby genetyczne dziedziczą się autosomalnie dominująco?</code>                                               |
  | <code>Gorgippia Gorgippia – starożytne miasto bosporańskie nad Morzem Czarnym, którego pozostałości znajdują się obecnie pod współczesną zabudową centralnej części miasta Anapa w Kraju Krasnodarskim w Rosji.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <code>gdzie obecnie znajduje się starożytne miasto Gorgippia?</code>                                                        |
  | <code>Ulubionym dystansem Rücker było 400 metrów i to na nim notowała największe indywidualne sukcesy : srebrny medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) 6. miejsce w Pucharze Świata w Lekkoatletyce (Hawana 1992) 5. miejsce na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) srebro podczas Mistrzostw Świata w Lekkoatletyce (Sewilla 1999) złota medalistka mistrzostw Niemiec Duże sukcesy odnosiła także w sztafecie 4 x 400 metrów : złoto Mistrzostw Europy juniorów w lekkoatletyce (Varaždin 1989) złoty medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) brąz na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) brązowy medal podczas Igrzysk Olimpijskich (Atlanta 1996) brąz na Halowych Mistrzostwach Świata w Lekkoatletyce (Paryż 1997) złoto Mistrzostw Świata w Lekkoatletyce (Ateny 1997) brązowy medal Mistrzostw Świata w Lekkoatletyce (Sewilla 1999)</code> | <code>kto zaprojektował medale, które będą wręczane podczas tegorocznych mistrzostw Europy juniorów w lekkoatletyce?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          384,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 32
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0          | 0      | -             | 0.1945                 | 0.2243                 | 0.2302                 | 0.1499                |
| 0.2735     | 1      | 8.2585        | -                      | -                      | -                      | -                     |
| 0.5470     | 2      | 8.4215        | -                      | -                      | -                      | -                     |
| 0.8205     | 3      | 7.899         | 0.2205                 | 0.2510                 | 0.2597                 | 0.1677                |
| 1.0855     | 4      | 6.5734        | -                      | -                      | -                      | -                     |
| 1.3590     | 5      | 6.2406        | -                      | -                      | -                      | -                     |
| 1.6325     | 6      | 6.0949        | -                      | -                      | -                      | -                     |
| 1.9060     | 7      | 5.7149        | 0.2736                 | 0.3061                 | 0.3224                 | 0.2124                |
| 2.1709     | 8      | 5.153         | -                      | -                      | -                      | -                     |
| 2.4444     | 9      | 5.3615        | -                      | -                      | -                      | -                     |
| 2.7179     | 10     | 5.3069        | -                      | -                      | -                      | -                     |
| 2.9915     | 11     | 5.1567        | 0.2914                 | 0.3238                 | 0.3402                 | 0.2191                |
| 3.2564     | 12     | 4.6824        | -                      | -                      | -                      | -                     |
| 3.5299     | 13     | 5.1072        | -                      | -                      | -                      | -                     |
| **3.8034** | **14** | **5.1575**    | **0.2967**             | **0.3302**             | **0.3443**             | **0.2196**            |
| 4.0684     | 15     | 4.5651        | 0.2960                 | 0.3304                 | 0.3452                 | 0.2209                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.1
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->