ve88ifz2 commited on
Commit
f60ae21
1 Parent(s): 28a9a75

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,790 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ language:
4
+ - en
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ metrics:
8
+ - cosine_accuracy@1
9
+ - cosine_accuracy@3
10
+ - cosine_accuracy@5
11
+ - cosine_accuracy@10
12
+ - cosine_precision@1
13
+ - cosine_precision@3
14
+ - cosine_precision@5
15
+ - cosine_precision@10
16
+ - cosine_recall@1
17
+ - cosine_recall@3
18
+ - cosine_recall@5
19
+ - cosine_recall@10
20
+ - cosine_ndcg@10
21
+ - cosine_mrr@10
22
+ - cosine_map@100
23
+ pipeline_tag: sentence-similarity
24
+ tags:
25
+ - sentence-transformers
26
+ - sentence-similarity
27
+ - feature-extraction
28
+ - dataset_size:1K<n<10K
29
+ - loss:MatryoshkaLoss
30
+ - loss:MultipleNegativesRankingLoss
31
+ widget:
32
+ - source_sentence: Herkules na rozstajach
33
+ sentences:
34
+ - jak zinterpretować wymowę obrazu Herkules na rozstajach?
35
+ - w jakim celu nowożeńcom w Korei wręcza się injeolmi?
36
+ - z jakiego powodu zwołano synod w Whitby?
37
+ - source_sentence: gdzie rośnie bokkonia?
38
+ sentences:
39
+ - gdzie występuje rogownica szerokolistna?
40
+ - Dłutowanie metodą Maaga Struganie metodą Sunderlanda
41
+ - kim byli beatyfikowani przez papieża Jana Pawła II męczennicy z Almerii?
42
+ - source_sentence: kto walczył o Brisbane?
43
+ sentences:
44
+ - Szczurza gorączka TAM Gorączka od ugryzienia szczura
45
+ - Szczurza gorączka TAM Gorączka od ugryzienia szczura
46
+ - który nadworny fotograf sprzedał swój patent firmie Eastman Kodak?
47
+ - source_sentence: Morskie Oko (kabaret)
48
+ sentences:
49
+ - jak skończył się spór o Morskie Oko?
50
+ - ile razy Srebrna Biblia była przywożona do Szwecji?
51
+ - W latach 1955–1956 część więźniów przebywających w Spassku zwolniono.
52
+ - source_sentence: ile katod ma duodioda?
53
+ sentences:
54
+ - kto nosi mantyle?
55
+ - w jakim celu nowożeńcom w Korei wręcza się injeolmi?
56
+ - W latach 1955–1956 część więźniów przebywających w Spassku zwolniono.
57
+ model-index:
58
+ - name: bge-base-en-v1.5-klej-dyk
59
+ results:
60
+ - task:
61
+ type: information-retrieval
62
+ name: Information Retrieval
63
+ dataset:
64
+ name: dim 768
65
+ type: dim_768
66
+ metrics:
67
+ - type: cosine_accuracy@1
68
+ value: 0.20432692307692307
69
+ name: Cosine Accuracy@1
70
+ - type: cosine_accuracy@3
71
+ value: 0.5024038461538461
72
+ name: Cosine Accuracy@3
73
+ - type: cosine_accuracy@5
74
+ value: 0.6802884615384616
75
+ name: Cosine Accuracy@5
76
+ - type: cosine_accuracy@10
77
+ value: 0.7548076923076923
78
+ name: Cosine Accuracy@10
79
+ - type: cosine_precision@1
80
+ value: 0.20432692307692307
81
+ name: Cosine Precision@1
82
+ - type: cosine_precision@3
83
+ value: 0.1674679487179487
84
+ name: Cosine Precision@3
85
+ - type: cosine_precision@5
86
+ value: 0.1360576923076923
87
+ name: Cosine Precision@5
88
+ - type: cosine_precision@10
89
+ value: 0.07548076923076923
90
+ name: Cosine Precision@10
91
+ - type: cosine_recall@1
92
+ value: 0.20432692307692307
93
+ name: Cosine Recall@1
94
+ - type: cosine_recall@3
95
+ value: 0.5024038461538461
96
+ name: Cosine Recall@3
97
+ - type: cosine_recall@5
98
+ value: 0.6802884615384616
99
+ name: Cosine Recall@5
100
+ - type: cosine_recall@10
101
+ value: 0.7548076923076923
102
+ name: Cosine Recall@10
103
+ - type: cosine_ndcg@10
104
+ value: 0.4741957684261531
105
+ name: Cosine Ndcg@10
106
+ - type: cosine_mrr@10
107
+ value: 0.3839495573870572
108
+ name: Cosine Mrr@10
109
+ - type: cosine_map@100
110
+ value: 0.3909524912840153
111
+ name: Cosine Map@100
112
+ - task:
113
+ type: information-retrieval
114
+ name: Information Retrieval
115
+ dataset:
116
+ name: dim 512
117
+ type: dim_512
118
+ metrics:
119
+ - type: cosine_accuracy@1
120
+ value: 0.19471153846153846
121
+ name: Cosine Accuracy@1
122
+ - type: cosine_accuracy@3
123
+ value: 0.49278846153846156
124
+ name: Cosine Accuracy@3
125
+ - type: cosine_accuracy@5
126
+ value: 0.6634615384615384
127
+ name: Cosine Accuracy@5
128
+ - type: cosine_accuracy@10
129
+ value: 0.7548076923076923
130
+ name: Cosine Accuracy@10
131
+ - type: cosine_precision@1
132
+ value: 0.19471153846153846
133
+ name: Cosine Precision@1
134
+ - type: cosine_precision@3
135
+ value: 0.1642628205128205
136
+ name: Cosine Precision@3
137
+ - type: cosine_precision@5
138
+ value: 0.13269230769230766
139
+ name: Cosine Precision@5
140
+ - type: cosine_precision@10
141
+ value: 0.07548076923076921
142
+ name: Cosine Precision@10
143
+ - type: cosine_recall@1
144
+ value: 0.19471153846153846
145
+ name: Cosine Recall@1
146
+ - type: cosine_recall@3
147
+ value: 0.49278846153846156
148
+ name: Cosine Recall@3
149
+ - type: cosine_recall@5
150
+ value: 0.6634615384615384
151
+ name: Cosine Recall@5
152
+ - type: cosine_recall@10
153
+ value: 0.7548076923076923
154
+ name: Cosine Recall@10
155
+ - type: cosine_ndcg@10
156
+ value: 0.4648228460121699
157
+ name: Cosine Ndcg@10
158
+ - type: cosine_mrr@10
159
+ value: 0.37225847069597073
160
+ name: Cosine Mrr@10
161
+ - type: cosine_map@100
162
+ value: 0.378344181427981
163
+ name: Cosine Map@100
164
+ - task:
165
+ type: information-retrieval
166
+ name: Information Retrieval
167
+ dataset:
168
+ name: dim 256
169
+ type: dim_256
170
+ metrics:
171
+ - type: cosine_accuracy@1
172
+ value: 0.18990384615384615
173
+ name: Cosine Accuracy@1
174
+ - type: cosine_accuracy@3
175
+ value: 0.4543269230769231
176
+ name: Cosine Accuracy@3
177
+ - type: cosine_accuracy@5
178
+ value: 0.6057692307692307
179
+ name: Cosine Accuracy@5
180
+ - type: cosine_accuracy@10
181
+ value: 0.7067307692307693
182
+ name: Cosine Accuracy@10
183
+ - type: cosine_precision@1
184
+ value: 0.18990384615384615
185
+ name: Cosine Precision@1
186
+ - type: cosine_precision@3
187
+ value: 0.15144230769230768
188
+ name: Cosine Precision@3
189
+ - type: cosine_precision@5
190
+ value: 0.12115384615384615
191
+ name: Cosine Precision@5
192
+ - type: cosine_precision@10
193
+ value: 0.07067307692307692
194
+ name: Cosine Precision@10
195
+ - type: cosine_recall@1
196
+ value: 0.18990384615384615
197
+ name: Cosine Recall@1
198
+ - type: cosine_recall@3
199
+ value: 0.4543269230769231
200
+ name: Cosine Recall@3
201
+ - type: cosine_recall@5
202
+ value: 0.6057692307692307
203
+ name: Cosine Recall@5
204
+ - type: cosine_recall@10
205
+ value: 0.7067307692307693
206
+ name: Cosine Recall@10
207
+ - type: cosine_ndcg@10
208
+ value: 0.437691661658994
209
+ name: Cosine Ndcg@10
210
+ - type: cosine_mrr@10
211
+ value: 0.3522741147741148
212
+ name: Cosine Mrr@10
213
+ - type: cosine_map@100
214
+ value: 0.35902651881139014
215
+ name: Cosine Map@100
216
+ - task:
217
+ type: information-retrieval
218
+ name: Information Retrieval
219
+ dataset:
220
+ name: dim 128
221
+ type: dim_128
222
+ metrics:
223
+ - type: cosine_accuracy@1
224
+ value: 0.18509615384615385
225
+ name: Cosine Accuracy@1
226
+ - type: cosine_accuracy@3
227
+ value: 0.4375
228
+ name: Cosine Accuracy@3
229
+ - type: cosine_accuracy@5
230
+ value: 0.5480769230769231
231
+ name: Cosine Accuracy@5
232
+ - type: cosine_accuracy@10
233
+ value: 0.6442307692307693
234
+ name: Cosine Accuracy@10
235
+ - type: cosine_precision@1
236
+ value: 0.18509615384615385
237
+ name: Cosine Precision@1
238
+ - type: cosine_precision@3
239
+ value: 0.14583333333333331
240
+ name: Cosine Precision@3
241
+ - type: cosine_precision@5
242
+ value: 0.1096153846153846
243
+ name: Cosine Precision@5
244
+ - type: cosine_precision@10
245
+ value: 0.06442307692307692
246
+ name: Cosine Precision@10
247
+ - type: cosine_recall@1
248
+ value: 0.18509615384615385
249
+ name: Cosine Recall@1
250
+ - type: cosine_recall@3
251
+ value: 0.4375
252
+ name: Cosine Recall@3
253
+ - type: cosine_recall@5
254
+ value: 0.5480769230769231
255
+ name: Cosine Recall@5
256
+ - type: cosine_recall@10
257
+ value: 0.6442307692307693
258
+ name: Cosine Recall@10
259
+ - type: cosine_ndcg@10
260
+ value: 0.4084493303372093
261
+ name: Cosine Ndcg@10
262
+ - type: cosine_mrr@10
263
+ value: 0.33323508089133086
264
+ name: Cosine Mrr@10
265
+ - type: cosine_map@100
266
+ value: 0.3393128348021269
267
+ name: Cosine Map@100
268
+ - task:
269
+ type: information-retrieval
270
+ name: Information Retrieval
271
+ dataset:
272
+ name: dim 64
273
+ type: dim_64
274
+ metrics:
275
+ - type: cosine_accuracy@1
276
+ value: 0.17307692307692307
277
+ name: Cosine Accuracy@1
278
+ - type: cosine_accuracy@3
279
+ value: 0.3389423076923077
280
+ name: Cosine Accuracy@3
281
+ - type: cosine_accuracy@5
282
+ value: 0.4254807692307692
283
+ name: Cosine Accuracy@5
284
+ - type: cosine_accuracy@10
285
+ value: 0.5144230769230769
286
+ name: Cosine Accuracy@10
287
+ - type: cosine_precision@1
288
+ value: 0.17307692307692307
289
+ name: Cosine Precision@1
290
+ - type: cosine_precision@3
291
+ value: 0.11298076923076923
292
+ name: Cosine Precision@3
293
+ - type: cosine_precision@5
294
+ value: 0.08509615384615386
295
+ name: Cosine Precision@5
296
+ - type: cosine_precision@10
297
+ value: 0.05144230769230769
298
+ name: Cosine Precision@10
299
+ - type: cosine_recall@1
300
+ value: 0.17307692307692307
301
+ name: Cosine Recall@1
302
+ - type: cosine_recall@3
303
+ value: 0.3389423076923077
304
+ name: Cosine Recall@3
305
+ - type: cosine_recall@5
306
+ value: 0.4254807692307692
307
+ name: Cosine Recall@5
308
+ - type: cosine_recall@10
309
+ value: 0.5144230769230769
310
+ name: Cosine Recall@10
311
+ - type: cosine_ndcg@10
312
+ value: 0.333723313431585
313
+ name: Cosine Ndcg@10
314
+ - type: cosine_mrr@10
315
+ value: 0.2768763354700855
316
+ name: Cosine Mrr@10
317
+ - type: cosine_map@100
318
+ value: 0.2853193687152632
319
+ name: Cosine Map@100
320
+ ---
321
+
322
+ # bge-base-en-v1.5-klej-dyk
323
+
324
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
325
+
326
+ ## Model Details
327
+
328
+ ### Model Description
329
+ - **Model Type:** Sentence Transformer
330
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
331
+ - **Maximum Sequence Length:** 512 tokens
332
+ - **Output Dimensionality:** 768 tokens
333
+ - **Similarity Function:** Cosine Similarity
334
+ <!-- - **Training Dataset:** Unknown -->
335
+ - **Language:** en
336
+ - **License:** apache-2.0
337
+
338
+ ### Model Sources
339
+
340
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
341
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
342
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
343
+
344
+ ### Full Model Architecture
345
+
346
+ ```
347
+ SentenceTransformer(
348
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
349
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
350
+ (2): Normalize()
351
+ )
352
+ ```
353
+
354
+ ## Usage
355
+
356
+ ### Direct Usage (Sentence Transformers)
357
+
358
+ First install the Sentence Transformers library:
359
+
360
+ ```bash
361
+ pip install -U sentence-transformers
362
+ ```
363
+
364
+ Then you can load this model and run inference.
365
+ ```python
366
+ from sentence_transformers import SentenceTransformer
367
+
368
+ # Download from the 🤗 Hub
369
+ model = SentenceTransformer("sentence_transformers_model_id")
370
+ # Run inference
371
+ sentences = [
372
+ 'ile katod ma duodioda?',
373
+ 'kto nosi mantyle?',
374
+ 'w jakim celu nowożeńcom w Korei wręcza się injeolmi?',
375
+ ]
376
+ embeddings = model.encode(sentences)
377
+ print(embeddings.shape)
378
+ # [3, 768]
379
+
380
+ # Get the similarity scores for the embeddings
381
+ similarities = model.similarity(embeddings, embeddings)
382
+ print(similarities.shape)
383
+ # [3, 3]
384
+ ```
385
+
386
+ <!--
387
+ ### Direct Usage (Transformers)
388
+
389
+ <details><summary>Click to see the direct usage in Transformers</summary>
390
+
391
+ </details>
392
+ -->
393
+
394
+ <!--
395
+ ### Downstream Usage (Sentence Transformers)
396
+
397
+ You can finetune this model on your own dataset.
398
+
399
+ <details><summary>Click to expand</summary>
400
+
401
+ </details>
402
+ -->
403
+
404
+ <!--
405
+ ### Out-of-Scope Use
406
+
407
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
408
+ -->
409
+
410
+ ## Evaluation
411
+
412
+ ### Metrics
413
+
414
+ #### Information Retrieval
415
+ * Dataset: `dim_768`
416
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
417
+
418
+ | Metric | Value |
419
+ |:--------------------|:----------|
420
+ | cosine_accuracy@1 | 0.2043 |
421
+ | cosine_accuracy@3 | 0.5024 |
422
+ | cosine_accuracy@5 | 0.6803 |
423
+ | cosine_accuracy@10 | 0.7548 |
424
+ | cosine_precision@1 | 0.2043 |
425
+ | cosine_precision@3 | 0.1675 |
426
+ | cosine_precision@5 | 0.1361 |
427
+ | cosine_precision@10 | 0.0755 |
428
+ | cosine_recall@1 | 0.2043 |
429
+ | cosine_recall@3 | 0.5024 |
430
+ | cosine_recall@5 | 0.6803 |
431
+ | cosine_recall@10 | 0.7548 |
432
+ | cosine_ndcg@10 | 0.4742 |
433
+ | cosine_mrr@10 | 0.3839 |
434
+ | **cosine_map@100** | **0.391** |
435
+
436
+ #### Information Retrieval
437
+ * Dataset: `dim_512`
438
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
439
+
440
+ | Metric | Value |
441
+ |:--------------------|:-----------|
442
+ | cosine_accuracy@1 | 0.1947 |
443
+ | cosine_accuracy@3 | 0.4928 |
444
+ | cosine_accuracy@5 | 0.6635 |
445
+ | cosine_accuracy@10 | 0.7548 |
446
+ | cosine_precision@1 | 0.1947 |
447
+ | cosine_precision@3 | 0.1643 |
448
+ | cosine_precision@5 | 0.1327 |
449
+ | cosine_precision@10 | 0.0755 |
450
+ | cosine_recall@1 | 0.1947 |
451
+ | cosine_recall@3 | 0.4928 |
452
+ | cosine_recall@5 | 0.6635 |
453
+ | cosine_recall@10 | 0.7548 |
454
+ | cosine_ndcg@10 | 0.4648 |
455
+ | cosine_mrr@10 | 0.3723 |
456
+ | **cosine_map@100** | **0.3783** |
457
+
458
+ #### Information Retrieval
459
+ * Dataset: `dim_256`
460
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
461
+
462
+ | Metric | Value |
463
+ |:--------------------|:----------|
464
+ | cosine_accuracy@1 | 0.1899 |
465
+ | cosine_accuracy@3 | 0.4543 |
466
+ | cosine_accuracy@5 | 0.6058 |
467
+ | cosine_accuracy@10 | 0.7067 |
468
+ | cosine_precision@1 | 0.1899 |
469
+ | cosine_precision@3 | 0.1514 |
470
+ | cosine_precision@5 | 0.1212 |
471
+ | cosine_precision@10 | 0.0707 |
472
+ | cosine_recall@1 | 0.1899 |
473
+ | cosine_recall@3 | 0.4543 |
474
+ | cosine_recall@5 | 0.6058 |
475
+ | cosine_recall@10 | 0.7067 |
476
+ | cosine_ndcg@10 | 0.4377 |
477
+ | cosine_mrr@10 | 0.3523 |
478
+ | **cosine_map@100** | **0.359** |
479
+
480
+ #### Information Retrieval
481
+ * Dataset: `dim_128`
482
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
483
+
484
+ | Metric | Value |
485
+ |:--------------------|:-----------|
486
+ | cosine_accuracy@1 | 0.1851 |
487
+ | cosine_accuracy@3 | 0.4375 |
488
+ | cosine_accuracy@5 | 0.5481 |
489
+ | cosine_accuracy@10 | 0.6442 |
490
+ | cosine_precision@1 | 0.1851 |
491
+ | cosine_precision@3 | 0.1458 |
492
+ | cosine_precision@5 | 0.1096 |
493
+ | cosine_precision@10 | 0.0644 |
494
+ | cosine_recall@1 | 0.1851 |
495
+ | cosine_recall@3 | 0.4375 |
496
+ | cosine_recall@5 | 0.5481 |
497
+ | cosine_recall@10 | 0.6442 |
498
+ | cosine_ndcg@10 | 0.4084 |
499
+ | cosine_mrr@10 | 0.3332 |
500
+ | **cosine_map@100** | **0.3393** |
501
+
502
+ #### Information Retrieval
503
+ * Dataset: `dim_64`
504
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
505
+
506
+ | Metric | Value |
507
+ |:--------------------|:-----------|
508
+ | cosine_accuracy@1 | 0.1731 |
509
+ | cosine_accuracy@3 | 0.3389 |
510
+ | cosine_accuracy@5 | 0.4255 |
511
+ | cosine_accuracy@10 | 0.5144 |
512
+ | cosine_precision@1 | 0.1731 |
513
+ | cosine_precision@3 | 0.113 |
514
+ | cosine_precision@5 | 0.0851 |
515
+ | cosine_precision@10 | 0.0514 |
516
+ | cosine_recall@1 | 0.1731 |
517
+ | cosine_recall@3 | 0.3389 |
518
+ | cosine_recall@5 | 0.4255 |
519
+ | cosine_recall@10 | 0.5144 |
520
+ | cosine_ndcg@10 | 0.3337 |
521
+ | cosine_mrr@10 | 0.2769 |
522
+ | **cosine_map@100** | **0.2853** |
523
+
524
+ <!--
525
+ ## Bias, Risks and Limitations
526
+
527
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
528
+ -->
529
+
530
+ <!--
531
+ ### Recommendations
532
+
533
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
534
+ -->
535
+
536
+ ## Training Details
537
+
538
+ ### Training Dataset
539
+
540
+ #### Unnamed Dataset
541
+
542
+
543
+ * Size: 3,738 training samples
544
+ * Columns: <code>positive</code> and <code>anchor</code>
545
+ * Approximate statistics based on the first 1000 samples:
546
+ | | positive | anchor |
547
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
548
+ | type | string | string |
549
+ | details | <ul><li>min: 6 tokens</li><li>mean: 89.95 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 30.73 tokens</li><li>max: 76 tokens</li></ul> |
550
+ * Samples:
551
+ | positive | anchor |
552
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
553
+ | <code>Rynek Kolumna Matki Boskiej, tzw. Kolumna Maryjna wykonana w latach 1725-1727 przez Johanna Melchiora Österreicha.</code> | <code>kto jest autorem kolumny maryjnej na raciborskim rynku?</code> |
554
+ | <code>Chleb razowy jest ciemniejszy i zawiera większą ilość błonnika oraz składników mineralnych niż chleb biały (pytlowy, czyli wypiekany z mąki przesiewanej przez pytel), bowiem jest w nim większy udział drobin pochodzących z łupin ziarna, gdzie gromadzą się te składniki.</code> | <code>które składniki razowego chleba odpowiadają za jego walory zdrowotne?</code> |
555
+ | <code>Najgłębsza znana studnia krasowa to jaskinia Vrtoglavica w Słowenii o głębokości ponad 600 metrów.</code> | <code>ile metrów głębokości mierzy studnia na podwórzu klasztoru w Czernej?</code> |
556
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
557
+ ```json
558
+ {
559
+ "loss": "MultipleNegativesRankingLoss",
560
+ "matryoshka_dims": [
561
+ 768,
562
+ 512,
563
+ 256,
564
+ 128,
565
+ 64
566
+ ],
567
+ "matryoshka_weights": [
568
+ 1,
569
+ 1,
570
+ 1,
571
+ 1,
572
+ 1
573
+ ],
574
+ "n_dims_per_step": -1
575
+ }
576
+ ```
577
+
578
+ ### Training Hyperparameters
579
+ #### Non-Default Hyperparameters
580
+
581
+ - `eval_strategy`: epoch
582
+ - `per_device_train_batch_size`: 16
583
+ - `per_device_eval_batch_size`: 16
584
+ - `gradient_accumulation_steps`: 16
585
+ - `learning_rate`: 2e-05
586
+ - `num_train_epochs`: 4
587
+ - `lr_scheduler_type`: cosine
588
+ - `warmup_ratio`: 0.1
589
+ - `bf16`: True
590
+ - `tf32`: True
591
+ - `load_best_model_at_end`: True
592
+ - `optim`: adamw_torch_fused
593
+ - `batch_sampler`: no_duplicates
594
+
595
+ #### All Hyperparameters
596
+ <details><summary>Click to expand</summary>
597
+
598
+ - `overwrite_output_dir`: False
599
+ - `do_predict`: False
600
+ - `eval_strategy`: epoch
601
+ - `prediction_loss_only`: True
602
+ - `per_device_train_batch_size`: 16
603
+ - `per_device_eval_batch_size`: 16
604
+ - `per_gpu_train_batch_size`: None
605
+ - `per_gpu_eval_batch_size`: None
606
+ - `gradient_accumulation_steps`: 16
607
+ - `eval_accumulation_steps`: None
608
+ - `learning_rate`: 2e-05
609
+ - `weight_decay`: 0.0
610
+ - `adam_beta1`: 0.9
611
+ - `adam_beta2`: 0.999
612
+ - `adam_epsilon`: 1e-08
613
+ - `max_grad_norm`: 1.0
614
+ - `num_train_epochs`: 4
615
+ - `max_steps`: -1
616
+ - `lr_scheduler_type`: cosine
617
+ - `lr_scheduler_kwargs`: {}
618
+ - `warmup_ratio`: 0.1
619
+ - `warmup_steps`: 0
620
+ - `log_level`: passive
621
+ - `log_level_replica`: warning
622
+ - `log_on_each_node`: True
623
+ - `logging_nan_inf_filter`: True
624
+ - `save_safetensors`: True
625
+ - `save_on_each_node`: False
626
+ - `save_only_model`: False
627
+ - `restore_callback_states_from_checkpoint`: False
628
+ - `no_cuda`: False
629
+ - `use_cpu`: False
630
+ - `use_mps_device`: False
631
+ - `seed`: 42
632
+ - `data_seed`: None
633
+ - `jit_mode_eval`: False
634
+ - `use_ipex`: False
635
+ - `bf16`: True
636
+ - `fp16`: False
637
+ - `fp16_opt_level`: O1
638
+ - `half_precision_backend`: auto
639
+ - `bf16_full_eval`: False
640
+ - `fp16_full_eval`: False
641
+ - `tf32`: True
642
+ - `local_rank`: 0
643
+ - `ddp_backend`: None
644
+ - `tpu_num_cores`: None
645
+ - `tpu_metrics_debug`: False
646
+ - `debug`: []
647
+ - `dataloader_drop_last`: False
648
+ - `dataloader_num_workers`: 0
649
+ - `dataloader_prefetch_factor`: None
650
+ - `past_index`: -1
651
+ - `disable_tqdm`: False
652
+ - `remove_unused_columns`: True
653
+ - `label_names`: None
654
+ - `load_best_model_at_end`: True
655
+ - `ignore_data_skip`: False
656
+ - `fsdp`: []
657
+ - `fsdp_min_num_params`: 0
658
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
659
+ - `fsdp_transformer_layer_cls_to_wrap`: None
660
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
661
+ - `deepspeed`: None
662
+ - `label_smoothing_factor`: 0.0
663
+ - `optim`: adamw_torch_fused
664
+ - `optim_args`: None
665
+ - `adafactor`: False
666
+ - `group_by_length`: False
667
+ - `length_column_name`: length
668
+ - `ddp_find_unused_parameters`: None
669
+ - `ddp_bucket_cap_mb`: None
670
+ - `ddp_broadcast_buffers`: False
671
+ - `dataloader_pin_memory`: True
672
+ - `dataloader_persistent_workers`: False
673
+ - `skip_memory_metrics`: True
674
+ - `use_legacy_prediction_loop`: False
675
+ - `push_to_hub`: False
676
+ - `resume_from_checkpoint`: None
677
+ - `hub_model_id`: None
678
+ - `hub_strategy`: every_save
679
+ - `hub_private_repo`: False
680
+ - `hub_always_push`: False
681
+ - `gradient_checkpointing`: False
682
+ - `gradient_checkpointing_kwargs`: None
683
+ - `include_inputs_for_metrics`: False
684
+ - `eval_do_concat_batches`: True
685
+ - `fp16_backend`: auto
686
+ - `push_to_hub_model_id`: None
687
+ - `push_to_hub_organization`: None
688
+ - `mp_parameters`:
689
+ - `auto_find_batch_size`: False
690
+ - `full_determinism`: False
691
+ - `torchdynamo`: None
692
+ - `ray_scope`: last
693
+ - `ddp_timeout`: 1800
694
+ - `torch_compile`: False
695
+ - `torch_compile_backend`: None
696
+ - `torch_compile_mode`: None
697
+ - `dispatch_batches`: None
698
+ - `split_batches`: None
699
+ - `include_tokens_per_second`: False
700
+ - `include_num_input_tokens_seen`: False
701
+ - `neftune_noise_alpha`: None
702
+ - `optim_target_modules`: None
703
+ - `batch_eval_metrics`: False
704
+ - `batch_sampler`: no_duplicates
705
+ - `multi_dataset_batch_sampler`: proportional
706
+
707
+ </details>
708
+
709
+ ### Training Logs
710
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
711
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
712
+ | 0.6838 | 10 | 6.5594 | - | - | - | - | - |
713
+ | 0.9573 | 14 | - | 0.3319 | 0.3751 | 0.3955 | 0.2618 | 0.4033 |
714
+ | 1.3675 | 20 | 4.2206 | - | - | - | - | - |
715
+ | 1.9829 | 29 | - | 0.3324 | 0.3591 | 0.3807 | 0.2833 | 0.3946 |
716
+ | 2.0513 | 30 | 3.3414 | - | - | - | - | - |
717
+ | 2.7350 | 40 | 2.9757 | - | - | - | - | - |
718
+ | 2.9402 | 43 | - | 0.3375 | 0.3570 | 0.3805 | 0.2840 | 0.3905 |
719
+ | 3.4188 | 50 | 2.8884 | - | - | - | - | - |
720
+ | **3.8291** | **56** | **-** | **0.3393** | **0.359** | **0.3783** | **0.2853** | **0.391** |
721
+
722
+ * The bold row denotes the saved checkpoint.
723
+
724
+ ### Framework Versions
725
+ - Python: 3.12.2
726
+ - Sentence Transformers: 3.0.0
727
+ - Transformers: 4.41.2
728
+ - PyTorch: 2.3.1
729
+ - Accelerate: 0.27.2
730
+ - Datasets: 2.19.1
731
+ - Tokenizers: 0.19.1
732
+
733
+ ## Citation
734
+
735
+ ### BibTeX
736
+
737
+ #### Sentence Transformers
738
+ ```bibtex
739
+ @inproceedings{reimers-2019-sentence-bert,
740
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
741
+ author = "Reimers, Nils and Gurevych, Iryna",
742
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
743
+ month = "11",
744
+ year = "2019",
745
+ publisher = "Association for Computational Linguistics",
746
+ url = "https://arxiv.org/abs/1908.10084",
747
+ }
748
+ ```
749
+
750
+ #### MatryoshkaLoss
751
+ ```bibtex
752
+ @misc{kusupati2024matryoshka,
753
+ title={Matryoshka Representation Learning},
754
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
755
+ year={2024},
756
+ eprint={2205.13147},
757
+ archivePrefix={arXiv},
758
+ primaryClass={cs.LG}
759
+ }
760
+ ```
761
+
762
+ #### MultipleNegativesRankingLoss
763
+ ```bibtex
764
+ @misc{henderson2017efficient,
765
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
766
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
767
+ year={2017},
768
+ eprint={1705.00652},
769
+ archivePrefix={arXiv},
770
+ primaryClass={cs.CL}
771
+ }
772
+ ```
773
+
774
+ <!--
775
+ ## Glossary
776
+
777
+ *Clearly define terms in order to be accessible across audiences.*
778
+ -->
779
+
780
+ <!--
781
+ ## Model Card Authors
782
+
783
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
784
+ -->
785
+
786
+ <!--
787
+ ## Model Card Contact
788
+
789
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
790
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/bge-base-en-v1.5-klej-dyk",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b76a4dec34d13d278e09ea95852c64032cca0b306063abef87cd6b12d71c6331
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff