Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +851 -0
- config.json +26 -0
- config_sentence_transformers.json +12 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,851 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Snowflake/snowflake-arctic-embed-m
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: sentence-transformers
|
6 |
+
license: apache-2.0
|
7 |
+
metrics:
|
8 |
+
- cosine_accuracy@1
|
9 |
+
- cosine_accuracy@3
|
10 |
+
- cosine_accuracy@5
|
11 |
+
- cosine_accuracy@10
|
12 |
+
- cosine_precision@1
|
13 |
+
- cosine_precision@3
|
14 |
+
- cosine_precision@5
|
15 |
+
- cosine_precision@10
|
16 |
+
- cosine_recall@1
|
17 |
+
- cosine_recall@3
|
18 |
+
- cosine_recall@5
|
19 |
+
- cosine_recall@10
|
20 |
+
- cosine_ndcg@10
|
21 |
+
- cosine_mrr@10
|
22 |
+
- cosine_map@100
|
23 |
+
pipeline_tag: sentence-similarity
|
24 |
+
tags:
|
25 |
+
- sentence-transformers
|
26 |
+
- sentence-similarity
|
27 |
+
- feature-extraction
|
28 |
+
- dataset_size:1K<n<10K
|
29 |
+
- loss:MatryoshkaLoss
|
30 |
+
- loss:MultipleNegativesRankingLoss
|
31 |
+
widget:
|
32 |
+
- source_sentence: kim był Steve Yzerman?
|
33 |
+
sentences:
|
34 |
+
- Łazik marsjański Opportunity
|
35 |
+
- w jakim kraju jest przyznawany Order Białego Lotosu?
|
36 |
+
- do powstania jakich instytucji przyczynił się pierwszy biskup Makau?
|
37 |
+
- source_sentence: gdzie rośnie bokkonia?
|
38 |
+
sentences:
|
39 |
+
- jak rozmnażają się Aeolosomatidae?
|
40 |
+
- kto 1 stycznia 2011 został gubernatorem Nowego Jorku?
|
41 |
+
- w której świątyni koronowany był król jerozolimski Baldwin I?
|
42 |
+
- source_sentence: Godło Republiki Ałtaju
|
43 |
+
sentences:
|
44 |
+
- co przedstawia godło Republiki Ałtaju?
|
45 |
+
- w którym kraju w noc sylwestrową je się oliebollen?
|
46 |
+
- który z członków załogi Międzynarodowej Stacji Kosmicznej nie ma nóg?
|
47 |
+
- source_sentence: co to jest meszne?
|
48 |
+
sentences:
|
49 |
+
- co to jest Mammoth Hot Springs?
|
50 |
+
- jak przebiegała kariera sportowa Witolda Sikorskiego?
|
51 |
+
- do uratowania ilu dzieł sztuki przyczynił się Borys Woźnicki?
|
52 |
+
- source_sentence: Chłopiec z Nariokotome
|
53 |
+
sentences:
|
54 |
+
- ile wynosiła objętość mózgu chłopca z Nariokotome?
|
55 |
+
- gdzie znajduje się czwarty polski cmentarz katyński?
|
56 |
+
- w jakich miejscach stał warszawski pomnik Ignacego Jana Paderewskiego?
|
57 |
+
model-index:
|
58 |
+
- name: snowflake-arctic-embed-m-klej-dyk
|
59 |
+
results:
|
60 |
+
- task:
|
61 |
+
type: information-retrieval
|
62 |
+
name: Information Retrieval
|
63 |
+
dataset:
|
64 |
+
name: dim 768
|
65 |
+
type: dim_768
|
66 |
+
metrics:
|
67 |
+
- type: cosine_accuracy@1
|
68 |
+
value: 0.18509615384615385
|
69 |
+
name: Cosine Accuracy@1
|
70 |
+
- type: cosine_accuracy@3
|
71 |
+
value: 0.4807692307692308
|
72 |
+
name: Cosine Accuracy@3
|
73 |
+
- type: cosine_accuracy@5
|
74 |
+
value: 0.625
|
75 |
+
name: Cosine Accuracy@5
|
76 |
+
- type: cosine_accuracy@10
|
77 |
+
value: 0.7259615384615384
|
78 |
+
name: Cosine Accuracy@10
|
79 |
+
- type: cosine_precision@1
|
80 |
+
value: 0.18509615384615385
|
81 |
+
name: Cosine Precision@1
|
82 |
+
- type: cosine_precision@3
|
83 |
+
value: 0.16025641025641024
|
84 |
+
name: Cosine Precision@3
|
85 |
+
- type: cosine_precision@5
|
86 |
+
value: 0.125
|
87 |
+
name: Cosine Precision@5
|
88 |
+
- type: cosine_precision@10
|
89 |
+
value: 0.07259615384615384
|
90 |
+
name: Cosine Precision@10
|
91 |
+
- type: cosine_recall@1
|
92 |
+
value: 0.18509615384615385
|
93 |
+
name: Cosine Recall@1
|
94 |
+
- type: cosine_recall@3
|
95 |
+
value: 0.4807692307692308
|
96 |
+
name: Cosine Recall@3
|
97 |
+
- type: cosine_recall@5
|
98 |
+
value: 0.625
|
99 |
+
name: Cosine Recall@5
|
100 |
+
- type: cosine_recall@10
|
101 |
+
value: 0.7259615384615384
|
102 |
+
name: Cosine Recall@10
|
103 |
+
- type: cosine_ndcg@10
|
104 |
+
value: 0.44786216254546357
|
105 |
+
name: Cosine Ndcg@10
|
106 |
+
- type: cosine_mrr@10
|
107 |
+
value: 0.358972451159951
|
108 |
+
name: Cosine Mrr@10
|
109 |
+
- type: cosine_map@100
|
110 |
+
value: 0.3672210078826913
|
111 |
+
name: Cosine Map@100
|
112 |
+
- task:
|
113 |
+
type: information-retrieval
|
114 |
+
name: Information Retrieval
|
115 |
+
dataset:
|
116 |
+
name: dim 512
|
117 |
+
type: dim_512
|
118 |
+
metrics:
|
119 |
+
- type: cosine_accuracy@1
|
120 |
+
value: 0.17548076923076922
|
121 |
+
name: Cosine Accuracy@1
|
122 |
+
- type: cosine_accuracy@3
|
123 |
+
value: 0.47115384615384615
|
124 |
+
name: Cosine Accuracy@3
|
125 |
+
- type: cosine_accuracy@5
|
126 |
+
value: 0.6129807692307693
|
127 |
+
name: Cosine Accuracy@5
|
128 |
+
- type: cosine_accuracy@10
|
129 |
+
value: 0.7019230769230769
|
130 |
+
name: Cosine Accuracy@10
|
131 |
+
- type: cosine_precision@1
|
132 |
+
value: 0.17548076923076922
|
133 |
+
name: Cosine Precision@1
|
134 |
+
- type: cosine_precision@3
|
135 |
+
value: 0.15705128205128205
|
136 |
+
name: Cosine Precision@3
|
137 |
+
- type: cosine_precision@5
|
138 |
+
value: 0.12259615384615384
|
139 |
+
name: Cosine Precision@5
|
140 |
+
- type: cosine_precision@10
|
141 |
+
value: 0.07019230769230768
|
142 |
+
name: Cosine Precision@10
|
143 |
+
- type: cosine_recall@1
|
144 |
+
value: 0.17548076923076922
|
145 |
+
name: Cosine Recall@1
|
146 |
+
- type: cosine_recall@3
|
147 |
+
value: 0.47115384615384615
|
148 |
+
name: Cosine Recall@3
|
149 |
+
- type: cosine_recall@5
|
150 |
+
value: 0.6129807692307693
|
151 |
+
name: Cosine Recall@5
|
152 |
+
- type: cosine_recall@10
|
153 |
+
value: 0.7019230769230769
|
154 |
+
name: Cosine Recall@10
|
155 |
+
- type: cosine_ndcg@10
|
156 |
+
value: 0.43344535381311455
|
157 |
+
name: Cosine Ndcg@10
|
158 |
+
- type: cosine_mrr@10
|
159 |
+
value: 0.3473920177045177
|
160 |
+
name: Cosine Mrr@10
|
161 |
+
- type: cosine_map@100
|
162 |
+
value: 0.3563798565478224
|
163 |
+
name: Cosine Map@100
|
164 |
+
- task:
|
165 |
+
type: information-retrieval
|
166 |
+
name: Information Retrieval
|
167 |
+
dataset:
|
168 |
+
name: dim 256
|
169 |
+
type: dim_256
|
170 |
+
metrics:
|
171 |
+
- type: cosine_accuracy@1
|
172 |
+
value: 0.15625
|
173 |
+
name: Cosine Accuracy@1
|
174 |
+
- type: cosine_accuracy@3
|
175 |
+
value: 0.4543269230769231
|
176 |
+
name: Cosine Accuracy@3
|
177 |
+
- type: cosine_accuracy@5
|
178 |
+
value: 0.5649038461538461
|
179 |
+
name: Cosine Accuracy@5
|
180 |
+
- type: cosine_accuracy@10
|
181 |
+
value: 0.6730769230769231
|
182 |
+
name: Cosine Accuracy@10
|
183 |
+
- type: cosine_precision@1
|
184 |
+
value: 0.15625
|
185 |
+
name: Cosine Precision@1
|
186 |
+
- type: cosine_precision@3
|
187 |
+
value: 0.15144230769230768
|
188 |
+
name: Cosine Precision@3
|
189 |
+
- type: cosine_precision@5
|
190 |
+
value: 0.11298076923076923
|
191 |
+
name: Cosine Precision@5
|
192 |
+
- type: cosine_precision@10
|
193 |
+
value: 0.0673076923076923
|
194 |
+
name: Cosine Precision@10
|
195 |
+
- type: cosine_recall@1
|
196 |
+
value: 0.15625
|
197 |
+
name: Cosine Recall@1
|
198 |
+
- type: cosine_recall@3
|
199 |
+
value: 0.4543269230769231
|
200 |
+
name: Cosine Recall@3
|
201 |
+
- type: cosine_recall@5
|
202 |
+
value: 0.5649038461538461
|
203 |
+
name: Cosine Recall@5
|
204 |
+
- type: cosine_recall@10
|
205 |
+
value: 0.6730769230769231
|
206 |
+
name: Cosine Recall@10
|
207 |
+
- type: cosine_ndcg@10
|
208 |
+
value: 0.4102597093872519
|
209 |
+
name: Cosine Ndcg@10
|
210 |
+
- type: cosine_mrr@10
|
211 |
+
value: 0.32613324175824177
|
212 |
+
name: Cosine Mrr@10
|
213 |
+
- type: cosine_map@100
|
214 |
+
value: 0.3350744652348361
|
215 |
+
name: Cosine Map@100
|
216 |
+
- task:
|
217 |
+
type: information-retrieval
|
218 |
+
name: Information Retrieval
|
219 |
+
dataset:
|
220 |
+
name: dim 128
|
221 |
+
type: dim_128
|
222 |
+
metrics:
|
223 |
+
- type: cosine_accuracy@1
|
224 |
+
value: 0.16346153846153846
|
225 |
+
name: Cosine Accuracy@1
|
226 |
+
- type: cosine_accuracy@3
|
227 |
+
value: 0.3918269230769231
|
228 |
+
name: Cosine Accuracy@3
|
229 |
+
- type: cosine_accuracy@5
|
230 |
+
value: 0.5072115384615384
|
231 |
+
name: Cosine Accuracy@5
|
232 |
+
- type: cosine_accuracy@10
|
233 |
+
value: 0.6057692307692307
|
234 |
+
name: Cosine Accuracy@10
|
235 |
+
- type: cosine_precision@1
|
236 |
+
value: 0.16346153846153846
|
237 |
+
name: Cosine Precision@1
|
238 |
+
- type: cosine_precision@3
|
239 |
+
value: 0.13060897435897434
|
240 |
+
name: Cosine Precision@3
|
241 |
+
- type: cosine_precision@5
|
242 |
+
value: 0.10144230769230769
|
243 |
+
name: Cosine Precision@5
|
244 |
+
- type: cosine_precision@10
|
245 |
+
value: 0.06057692307692307
|
246 |
+
name: Cosine Precision@10
|
247 |
+
- type: cosine_recall@1
|
248 |
+
value: 0.16346153846153846
|
249 |
+
name: Cosine Recall@1
|
250 |
+
- type: cosine_recall@3
|
251 |
+
value: 0.3918269230769231
|
252 |
+
name: Cosine Recall@3
|
253 |
+
- type: cosine_recall@5
|
254 |
+
value: 0.5072115384615384
|
255 |
+
name: Cosine Recall@5
|
256 |
+
- type: cosine_recall@10
|
257 |
+
value: 0.6057692307692307
|
258 |
+
name: Cosine Recall@10
|
259 |
+
- type: cosine_ndcg@10
|
260 |
+
value: 0.3757626519143444
|
261 |
+
name: Cosine Ndcg@10
|
262 |
+
- type: cosine_mrr@10
|
263 |
+
value: 0.30273962148962136
|
264 |
+
name: Cosine Mrr@10
|
265 |
+
- type: cosine_map@100
|
266 |
+
value: 0.3116992239855167
|
267 |
+
name: Cosine Map@100
|
268 |
+
- task:
|
269 |
+
type: information-retrieval
|
270 |
+
name: Information Retrieval
|
271 |
+
dataset:
|
272 |
+
name: dim 64
|
273 |
+
type: dim_64
|
274 |
+
metrics:
|
275 |
+
- type: cosine_accuracy@1
|
276 |
+
value: 0.14903846153846154
|
277 |
+
name: Cosine Accuracy@1
|
278 |
+
- type: cosine_accuracy@3
|
279 |
+
value: 0.3389423076923077
|
280 |
+
name: Cosine Accuracy@3
|
281 |
+
- type: cosine_accuracy@5
|
282 |
+
value: 0.4182692307692308
|
283 |
+
name: Cosine Accuracy@5
|
284 |
+
- type: cosine_accuracy@10
|
285 |
+
value: 0.49278846153846156
|
286 |
+
name: Cosine Accuracy@10
|
287 |
+
- type: cosine_precision@1
|
288 |
+
value: 0.14903846153846154
|
289 |
+
name: Cosine Precision@1
|
290 |
+
- type: cosine_precision@3
|
291 |
+
value: 0.11298076923076923
|
292 |
+
name: Cosine Precision@3
|
293 |
+
- type: cosine_precision@5
|
294 |
+
value: 0.08365384615384615
|
295 |
+
name: Cosine Precision@5
|
296 |
+
- type: cosine_precision@10
|
297 |
+
value: 0.04927884615384615
|
298 |
+
name: Cosine Precision@10
|
299 |
+
- type: cosine_recall@1
|
300 |
+
value: 0.14903846153846154
|
301 |
+
name: Cosine Recall@1
|
302 |
+
- type: cosine_recall@3
|
303 |
+
value: 0.3389423076923077
|
304 |
+
name: Cosine Recall@3
|
305 |
+
- type: cosine_recall@5
|
306 |
+
value: 0.4182692307692308
|
307 |
+
name: Cosine Recall@5
|
308 |
+
- type: cosine_recall@10
|
309 |
+
value: 0.49278846153846156
|
310 |
+
name: Cosine Recall@10
|
311 |
+
- type: cosine_ndcg@10
|
312 |
+
value: 0.31783226267644227
|
313 |
+
name: Cosine Ndcg@10
|
314 |
+
- type: cosine_mrr@10
|
315 |
+
value: 0.26212320665445676
|
316 |
+
name: Cosine Mrr@10
|
317 |
+
- type: cosine_map@100
|
318 |
+
value: 0.27044860532149884
|
319 |
+
name: Cosine Map@100
|
320 |
+
---
|
321 |
+
|
322 |
+
# snowflake-arctic-embed-m-klej-dyk
|
323 |
+
|
324 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
325 |
+
|
326 |
+
## Model Details
|
327 |
+
|
328 |
+
### Model Description
|
329 |
+
- **Model Type:** Sentence Transformer
|
330 |
+
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision 2ca412ec9505022eebd7d10286fbbad4b779f6e0 -->
|
331 |
+
- **Maximum Sequence Length:** 512 tokens
|
332 |
+
- **Output Dimensionality:** 768 tokens
|
333 |
+
- **Similarity Function:** Cosine Similarity
|
334 |
+
<!-- - **Training Dataset:** Unknown -->
|
335 |
+
- **Language:** en
|
336 |
+
- **License:** apache-2.0
|
337 |
+
|
338 |
+
### Model Sources
|
339 |
+
|
340 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
341 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
342 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
343 |
+
|
344 |
+
### Full Model Architecture
|
345 |
+
|
346 |
+
```
|
347 |
+
SentenceTransformer(
|
348 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
349 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
350 |
+
(2): Normalize()
|
351 |
+
)
|
352 |
+
```
|
353 |
+
|
354 |
+
## Usage
|
355 |
+
|
356 |
+
### Direct Usage (Sentence Transformers)
|
357 |
+
|
358 |
+
First install the Sentence Transformers library:
|
359 |
+
|
360 |
+
```bash
|
361 |
+
pip install -U sentence-transformers
|
362 |
+
```
|
363 |
+
|
364 |
+
Then you can load this model and run inference.
|
365 |
+
```python
|
366 |
+
from sentence_transformers import SentenceTransformer
|
367 |
+
|
368 |
+
# Download from the 🤗 Hub
|
369 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
370 |
+
# Run inference
|
371 |
+
sentences = [
|
372 |
+
'Chłopiec z Nariokotome',
|
373 |
+
'ile wynosiła objętość mózgu chłopca z Nariokotome?',
|
374 |
+
'gdzie znajduje się czwarty polski cmentarz katyński?',
|
375 |
+
]
|
376 |
+
embeddings = model.encode(sentences)
|
377 |
+
print(embeddings.shape)
|
378 |
+
# [3, 768]
|
379 |
+
|
380 |
+
# Get the similarity scores for the embeddings
|
381 |
+
similarities = model.similarity(embeddings, embeddings)
|
382 |
+
print(similarities.shape)
|
383 |
+
# [3, 3]
|
384 |
+
```
|
385 |
+
|
386 |
+
<!--
|
387 |
+
### Direct Usage (Transformers)
|
388 |
+
|
389 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
390 |
+
|
391 |
+
</details>
|
392 |
+
-->
|
393 |
+
|
394 |
+
<!--
|
395 |
+
### Downstream Usage (Sentence Transformers)
|
396 |
+
|
397 |
+
You can finetune this model on your own dataset.
|
398 |
+
|
399 |
+
<details><summary>Click to expand</summary>
|
400 |
+
|
401 |
+
</details>
|
402 |
+
-->
|
403 |
+
|
404 |
+
<!--
|
405 |
+
### Out-of-Scope Use
|
406 |
+
|
407 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
408 |
+
-->
|
409 |
+
|
410 |
+
## Evaluation
|
411 |
+
|
412 |
+
### Metrics
|
413 |
+
|
414 |
+
#### Information Retrieval
|
415 |
+
* Dataset: `dim_768`
|
416 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
417 |
+
|
418 |
+
| Metric | Value |
|
419 |
+
|:--------------------|:-----------|
|
420 |
+
| cosine_accuracy@1 | 0.1851 |
|
421 |
+
| cosine_accuracy@3 | 0.4808 |
|
422 |
+
| cosine_accuracy@5 | 0.625 |
|
423 |
+
| cosine_accuracy@10 | 0.726 |
|
424 |
+
| cosine_precision@1 | 0.1851 |
|
425 |
+
| cosine_precision@3 | 0.1603 |
|
426 |
+
| cosine_precision@5 | 0.125 |
|
427 |
+
| cosine_precision@10 | 0.0726 |
|
428 |
+
| cosine_recall@1 | 0.1851 |
|
429 |
+
| cosine_recall@3 | 0.4808 |
|
430 |
+
| cosine_recall@5 | 0.625 |
|
431 |
+
| cosine_recall@10 | 0.726 |
|
432 |
+
| cosine_ndcg@10 | 0.4479 |
|
433 |
+
| cosine_mrr@10 | 0.359 |
|
434 |
+
| **cosine_map@100** | **0.3672** |
|
435 |
+
|
436 |
+
#### Information Retrieval
|
437 |
+
* Dataset: `dim_512`
|
438 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
439 |
+
|
440 |
+
| Metric | Value |
|
441 |
+
|:--------------------|:-----------|
|
442 |
+
| cosine_accuracy@1 | 0.1755 |
|
443 |
+
| cosine_accuracy@3 | 0.4712 |
|
444 |
+
| cosine_accuracy@5 | 0.613 |
|
445 |
+
| cosine_accuracy@10 | 0.7019 |
|
446 |
+
| cosine_precision@1 | 0.1755 |
|
447 |
+
| cosine_precision@3 | 0.1571 |
|
448 |
+
| cosine_precision@5 | 0.1226 |
|
449 |
+
| cosine_precision@10 | 0.0702 |
|
450 |
+
| cosine_recall@1 | 0.1755 |
|
451 |
+
| cosine_recall@3 | 0.4712 |
|
452 |
+
| cosine_recall@5 | 0.613 |
|
453 |
+
| cosine_recall@10 | 0.7019 |
|
454 |
+
| cosine_ndcg@10 | 0.4334 |
|
455 |
+
| cosine_mrr@10 | 0.3474 |
|
456 |
+
| **cosine_map@100** | **0.3564** |
|
457 |
+
|
458 |
+
#### Information Retrieval
|
459 |
+
* Dataset: `dim_256`
|
460 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
461 |
+
|
462 |
+
| Metric | Value |
|
463 |
+
|:--------------------|:-----------|
|
464 |
+
| cosine_accuracy@1 | 0.1562 |
|
465 |
+
| cosine_accuracy@3 | 0.4543 |
|
466 |
+
| cosine_accuracy@5 | 0.5649 |
|
467 |
+
| cosine_accuracy@10 | 0.6731 |
|
468 |
+
| cosine_precision@1 | 0.1562 |
|
469 |
+
| cosine_precision@3 | 0.1514 |
|
470 |
+
| cosine_precision@5 | 0.113 |
|
471 |
+
| cosine_precision@10 | 0.0673 |
|
472 |
+
| cosine_recall@1 | 0.1562 |
|
473 |
+
| cosine_recall@3 | 0.4543 |
|
474 |
+
| cosine_recall@5 | 0.5649 |
|
475 |
+
| cosine_recall@10 | 0.6731 |
|
476 |
+
| cosine_ndcg@10 | 0.4103 |
|
477 |
+
| cosine_mrr@10 | 0.3261 |
|
478 |
+
| **cosine_map@100** | **0.3351** |
|
479 |
+
|
480 |
+
#### Information Retrieval
|
481 |
+
* Dataset: `dim_128`
|
482 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
483 |
+
|
484 |
+
| Metric | Value |
|
485 |
+
|:--------------------|:-----------|
|
486 |
+
| cosine_accuracy@1 | 0.1635 |
|
487 |
+
| cosine_accuracy@3 | 0.3918 |
|
488 |
+
| cosine_accuracy@5 | 0.5072 |
|
489 |
+
| cosine_accuracy@10 | 0.6058 |
|
490 |
+
| cosine_precision@1 | 0.1635 |
|
491 |
+
| cosine_precision@3 | 0.1306 |
|
492 |
+
| cosine_precision@5 | 0.1014 |
|
493 |
+
| cosine_precision@10 | 0.0606 |
|
494 |
+
| cosine_recall@1 | 0.1635 |
|
495 |
+
| cosine_recall@3 | 0.3918 |
|
496 |
+
| cosine_recall@5 | 0.5072 |
|
497 |
+
| cosine_recall@10 | 0.6058 |
|
498 |
+
| cosine_ndcg@10 | 0.3758 |
|
499 |
+
| cosine_mrr@10 | 0.3027 |
|
500 |
+
| **cosine_map@100** | **0.3117** |
|
501 |
+
|
502 |
+
#### Information Retrieval
|
503 |
+
* Dataset: `dim_64`
|
504 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
505 |
+
|
506 |
+
| Metric | Value |
|
507 |
+
|:--------------------|:-----------|
|
508 |
+
| cosine_accuracy@1 | 0.149 |
|
509 |
+
| cosine_accuracy@3 | 0.3389 |
|
510 |
+
| cosine_accuracy@5 | 0.4183 |
|
511 |
+
| cosine_accuracy@10 | 0.4928 |
|
512 |
+
| cosine_precision@1 | 0.149 |
|
513 |
+
| cosine_precision@3 | 0.113 |
|
514 |
+
| cosine_precision@5 | 0.0837 |
|
515 |
+
| cosine_precision@10 | 0.0493 |
|
516 |
+
| cosine_recall@1 | 0.149 |
|
517 |
+
| cosine_recall@3 | 0.3389 |
|
518 |
+
| cosine_recall@5 | 0.4183 |
|
519 |
+
| cosine_recall@10 | 0.4928 |
|
520 |
+
| cosine_ndcg@10 | 0.3178 |
|
521 |
+
| cosine_mrr@10 | 0.2621 |
|
522 |
+
| **cosine_map@100** | **0.2704** |
|
523 |
+
|
524 |
+
<!--
|
525 |
+
## Bias, Risks and Limitations
|
526 |
+
|
527 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
528 |
+
-->
|
529 |
+
|
530 |
+
<!--
|
531 |
+
### Recommendations
|
532 |
+
|
533 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
534 |
+
-->
|
535 |
+
|
536 |
+
## Training Details
|
537 |
+
|
538 |
+
### Training Dataset
|
539 |
+
|
540 |
+
#### Unnamed Dataset
|
541 |
+
|
542 |
+
|
543 |
+
* Size: 3,738 training samples
|
544 |
+
* Columns: <code>positive</code> and <code>anchor</code>
|
545 |
+
* Approximate statistics based on the first 1000 samples:
|
546 |
+
| | positive | anchor |
|
547 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
548 |
+
| type | string | string |
|
549 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 94.61 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 30.71 tokens</li><li>max: 76 tokens</li></ul> |
|
550 |
+
* Samples:
|
551 |
+
| positive | anchor |
|
552 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|
|
553 |
+
| <code>Marsz Ochotników (chin.</code> | <code>kto jest kompozytorem chińskiego hymnu narodowego Marsz Ochotników?</code> |
|
554 |
+
| <code>Wybrane przykłady: Święta Rodzina – Maryja z Dzieciątkiem na ręku, niekiedy obok niej stoi św. Józef Rodzina Marii – przedstawienie w którym pojawia się Święta Rodzina oraz postaci spokrewnione z Marią. Maria w połogu (Maria in puerperio) – leżąca na łożu Maria opiekuje się Dzieciątkiem Maria karmiąca (Maria lactans) – Maria karmiąca swą piersią Dzieciątko Orantka – kobieta modląca się z podniesionymi rękami (częsty motyw ikon wschodnich); Sacra Conversazione – Matka Boska tronująca z Dzieciątkiem, otoczona stojącymi postaciami świętych Pietà – opłakująca Jezusa, trzymając na kolanach jego ciało po śmierci na krzyżu; Hodegetria – ujęcie popiersia Maryi, trzymającej na rękach małego Jezusa, częsty motyw w ikonach Eleusa – formalnie podobne do przedstawienia Hodegetrii lecz Maryja policzkiem przytula się do policzka Jezusa Immaculata – Niepokalane Poczęcie Najświętszej Maryi Panny.</code> | <code>kto zamiast Maryi trzyma nowonarodzonego Jezusa w scenie Bożego Narodzenia przedstawionej na poliptyku z Marią i Dzieciątkiem Jezus?</code> |
|
555 |
+
| <code>Pomnik Josepha von Eichendorffa w Brzeziu Pomnik Josepha von Eichendorffa – odtworzony w 2006 roku pomnik znanego niemieckiego poety epoki romantyzmu związanego z ziemią raciborską, Josepha von Eichendorffa.</code> | <code>po ilu latach odtworzono wysadzony w 1945 roku pomnik Josepha von Eichendorffa w Raciborzu-Brzeziu?</code> |
|
556 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
557 |
+
```json
|
558 |
+
{
|
559 |
+
"loss": "MultipleNegativesRankingLoss",
|
560 |
+
"matryoshka_dims": [
|
561 |
+
768,
|
562 |
+
512,
|
563 |
+
256,
|
564 |
+
128,
|
565 |
+
64
|
566 |
+
],
|
567 |
+
"matryoshka_weights": [
|
568 |
+
1,
|
569 |
+
1,
|
570 |
+
1,
|
571 |
+
1,
|
572 |
+
1
|
573 |
+
],
|
574 |
+
"n_dims_per_step": -1
|
575 |
+
}
|
576 |
+
```
|
577 |
+
|
578 |
+
### Training Hyperparameters
|
579 |
+
#### Non-Default Hyperparameters
|
580 |
+
|
581 |
+
- `eval_strategy`: epoch
|
582 |
+
- `per_device_train_batch_size`: 16
|
583 |
+
- `per_device_eval_batch_size`: 16
|
584 |
+
- `gradient_accumulation_steps`: 16
|
585 |
+
- `learning_rate`: 2e-05
|
586 |
+
- `num_train_epochs`: 5
|
587 |
+
- `lr_scheduler_type`: cosine
|
588 |
+
- `warmup_ratio`: 0.1
|
589 |
+
- `bf16`: True
|
590 |
+
- `tf32`: True
|
591 |
+
- `load_best_model_at_end`: True
|
592 |
+
- `optim`: adamw_torch_fused
|
593 |
+
- `batch_sampler`: no_duplicates
|
594 |
+
|
595 |
+
#### All Hyperparameters
|
596 |
+
<details><summary>Click to expand</summary>
|
597 |
+
|
598 |
+
- `overwrite_output_dir`: False
|
599 |
+
- `do_predict`: False
|
600 |
+
- `eval_strategy`: epoch
|
601 |
+
- `prediction_loss_only`: True
|
602 |
+
- `per_device_train_batch_size`: 16
|
603 |
+
- `per_device_eval_batch_size`: 16
|
604 |
+
- `per_gpu_train_batch_size`: None
|
605 |
+
- `per_gpu_eval_batch_size`: None
|
606 |
+
- `gradient_accumulation_steps`: 16
|
607 |
+
- `eval_accumulation_steps`: None
|
608 |
+
- `learning_rate`: 2e-05
|
609 |
+
- `weight_decay`: 0.0
|
610 |
+
- `adam_beta1`: 0.9
|
611 |
+
- `adam_beta2`: 0.999
|
612 |
+
- `adam_epsilon`: 1e-08
|
613 |
+
- `max_grad_norm`: 1.0
|
614 |
+
- `num_train_epochs`: 5
|
615 |
+
- `max_steps`: -1
|
616 |
+
- `lr_scheduler_type`: cosine
|
617 |
+
- `lr_scheduler_kwargs`: {}
|
618 |
+
- `warmup_ratio`: 0.1
|
619 |
+
- `warmup_steps`: 0
|
620 |
+
- `log_level`: passive
|
621 |
+
- `log_level_replica`: warning
|
622 |
+
- `log_on_each_node`: True
|
623 |
+
- `logging_nan_inf_filter`: True
|
624 |
+
- `save_safetensors`: True
|
625 |
+
- `save_on_each_node`: False
|
626 |
+
- `save_only_model`: False
|
627 |
+
- `restore_callback_states_from_checkpoint`: False
|
628 |
+
- `no_cuda`: False
|
629 |
+
- `use_cpu`: False
|
630 |
+
- `use_mps_device`: False
|
631 |
+
- `seed`: 42
|
632 |
+
- `data_seed`: None
|
633 |
+
- `jit_mode_eval`: False
|
634 |
+
- `use_ipex`: False
|
635 |
+
- `bf16`: True
|
636 |
+
- `fp16`: False
|
637 |
+
- `fp16_opt_level`: O1
|
638 |
+
- `half_precision_backend`: auto
|
639 |
+
- `bf16_full_eval`: False
|
640 |
+
- `fp16_full_eval`: False
|
641 |
+
- `tf32`: True
|
642 |
+
- `local_rank`: 0
|
643 |
+
- `ddp_backend`: None
|
644 |
+
- `tpu_num_cores`: None
|
645 |
+
- `tpu_metrics_debug`: False
|
646 |
+
- `debug`: []
|
647 |
+
- `dataloader_drop_last`: False
|
648 |
+
- `dataloader_num_workers`: 0
|
649 |
+
- `dataloader_prefetch_factor`: None
|
650 |
+
- `past_index`: -1
|
651 |
+
- `disable_tqdm`: False
|
652 |
+
- `remove_unused_columns`: True
|
653 |
+
- `label_names`: None
|
654 |
+
- `load_best_model_at_end`: True
|
655 |
+
- `ignore_data_skip`: False
|
656 |
+
- `fsdp`: []
|
657 |
+
- `fsdp_min_num_params`: 0
|
658 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
659 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
660 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
661 |
+
- `deepspeed`: None
|
662 |
+
- `label_smoothing_factor`: 0.0
|
663 |
+
- `optim`: adamw_torch_fused
|
664 |
+
- `optim_args`: None
|
665 |
+
- `adafactor`: False
|
666 |
+
- `group_by_length`: False
|
667 |
+
- `length_column_name`: length
|
668 |
+
- `ddp_find_unused_parameters`: None
|
669 |
+
- `ddp_bucket_cap_mb`: None
|
670 |
+
- `ddp_broadcast_buffers`: False
|
671 |
+
- `dataloader_pin_memory`: True
|
672 |
+
- `dataloader_persistent_workers`: False
|
673 |
+
- `skip_memory_metrics`: True
|
674 |
+
- `use_legacy_prediction_loop`: False
|
675 |
+
- `push_to_hub`: False
|
676 |
+
- `resume_from_checkpoint`: None
|
677 |
+
- `hub_model_id`: None
|
678 |
+
- `hub_strategy`: every_save
|
679 |
+
- `hub_private_repo`: False
|
680 |
+
- `hub_always_push`: False
|
681 |
+
- `gradient_checkpointing`: False
|
682 |
+
- `gradient_checkpointing_kwargs`: None
|
683 |
+
- `include_inputs_for_metrics`: False
|
684 |
+
- `eval_do_concat_batches`: True
|
685 |
+
- `fp16_backend`: auto
|
686 |
+
- `push_to_hub_model_id`: None
|
687 |
+
- `push_to_hub_organization`: None
|
688 |
+
- `mp_parameters`:
|
689 |
+
- `auto_find_batch_size`: False
|
690 |
+
- `full_determinism`: False
|
691 |
+
- `torchdynamo`: None
|
692 |
+
- `ray_scope`: last
|
693 |
+
- `ddp_timeout`: 1800
|
694 |
+
- `torch_compile`: False
|
695 |
+
- `torch_compile_backend`: None
|
696 |
+
- `torch_compile_mode`: None
|
697 |
+
- `dispatch_batches`: None
|
698 |
+
- `split_batches`: None
|
699 |
+
- `include_tokens_per_second`: False
|
700 |
+
- `include_num_input_tokens_seen`: False
|
701 |
+
- `neftune_noise_alpha`: None
|
702 |
+
- `optim_target_modules`: None
|
703 |
+
- `batch_eval_metrics`: False
|
704 |
+
- `batch_sampler`: no_duplicates
|
705 |
+
- `multi_dataset_batch_sampler`: proportional
|
706 |
+
|
707 |
+
</details>
|
708 |
+
|
709 |
+
### Training Logs
|
710 |
+
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|
711 |
+
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
|
712 |
+
| 0.0684 | 1 | 9.3155 | - | - | - | - | - |
|
713 |
+
| 0.1368 | 2 | 9.1788 | - | - | - | - | - |
|
714 |
+
| 0.2051 | 3 | 8.8387 | - | - | - | - | - |
|
715 |
+
| 0.2735 | 4 | 8.2961 | - | - | - | - | - |
|
716 |
+
| 0.3419 | 5 | 8.0242 | - | - | - | - | - |
|
717 |
+
| 0.4103 | 6 | 7.2329 | - | - | - | - | - |
|
718 |
+
| 0.4786 | 7 | 5.4386 | - | - | - | - | - |
|
719 |
+
| 0.5470 | 8 | 6.1186 | - | - | - | - | - |
|
720 |
+
| 0.6154 | 9 | 4.9714 | - | - | - | - | - |
|
721 |
+
| 0.6838 | 10 | 5.1958 | - | - | - | - | - |
|
722 |
+
| 0.7521 | 11 | 5.1135 | - | - | - | - | - |
|
723 |
+
| 0.8205 | 12 | 4.6971 | - | - | - | - | - |
|
724 |
+
| 0.8889 | 13 | 4.5559 | - | - | - | - | - |
|
725 |
+
| 0.9573 | 14 | 3.9357 | 0.2842 | 0.3098 | 0.3191 | 0.2238 | 0.3209 |
|
726 |
+
| 1.0256 | 15 | 3.7916 | - | - | - | - | - |
|
727 |
+
| 1.0940 | 16 | 3.6393 | - | - | - | - | - |
|
728 |
+
| 1.1624 | 17 | 3.7733 | - | - | - | - | - |
|
729 |
+
| 1.2308 | 18 | 3.6974 | - | - | - | - | - |
|
730 |
+
| 1.2991 | 19 | 3.5964 | - | - | - | - | - |
|
731 |
+
| 1.3675 | 20 | 3.4118 | - | - | - | - | - |
|
732 |
+
| 1.4359 | 21 | 3.2022 | - | - | - | - | - |
|
733 |
+
| 1.5043 | 22 | 2.8133 | - | - | - | - | - |
|
734 |
+
| 1.5726 | 23 | 3.0871 | - | - | - | - | - |
|
735 |
+
| 1.6410 | 24 | 2.9559 | - | - | - | - | - |
|
736 |
+
| 1.7094 | 25 | 2.8192 | - | - | - | - | - |
|
737 |
+
| 1.7778 | 26 | 3.462 | - | - | - | - | - |
|
738 |
+
| 1.8462 | 27 | 3.1435 | - | - | - | - | - |
|
739 |
+
| 1.9145 | 28 | 2.8001 | - | - | - | - | - |
|
740 |
+
| 1.9829 | 29 | 2.5643 | 0.3134 | 0.3359 | 0.3563 | 0.2588 | 0.3671 |
|
741 |
+
| 2.0513 | 30 | 2.4295 | - | - | - | - | - |
|
742 |
+
| 2.1197 | 31 | 2.3892 | - | - | - | - | - |
|
743 |
+
| 2.1880 | 32 | 2.5228 | - | - | - | - | - |
|
744 |
+
| 2.2564 | 33 | 2.4906 | - | - | - | - | - |
|
745 |
+
| 2.3248 | 34 | 2.5358 | - | - | - | - | - |
|
746 |
+
| 2.3932 | 35 | 2.2806 | - | - | - | - | - |
|
747 |
+
| 2.4615 | 36 | 2.0083 | - | - | - | - | - |
|
748 |
+
| 2.5299 | 37 | 2.5088 | - | - | - | - | - |
|
749 |
+
| 2.5983 | 38 | 2.0628 | - | - | - | - | - |
|
750 |
+
| 2.6667 | 39 | 2.193 | - | - | - | - | - |
|
751 |
+
| 2.7350 | 40 | 2.4783 | - | - | - | - | - |
|
752 |
+
| 2.8034 | 41 | 2.382 | - | - | - | - | - |
|
753 |
+
| 2.8718 | 42 | 2.2017 | - | - | - | - | - |
|
754 |
+
| 2.9402 | 43 | 1.9739 | 0.3111 | 0.3392 | 0.3572 | 0.2657 | 0.3659 |
|
755 |
+
| 3.0085 | 44 | 2.0332 | - | - | - | - | - |
|
756 |
+
| 3.0769 | 45 | 1.9983 | - | - | - | - | - |
|
757 |
+
| 3.1453 | 46 | 1.8612 | - | - | - | - | - |
|
758 |
+
| 3.2137 | 47 | 1.9897 | - | - | - | - | - |
|
759 |
+
| 3.2821 | 48 | 2.2514 | - | - | - | - | - |
|
760 |
+
| 3.3504 | 49 | 2.0092 | - | - | - | - | - |
|
761 |
+
| 3.4188 | 50 | 1.7399 | - | - | - | - | - |
|
762 |
+
| 3.4872 | 51 | 1.5825 | - | - | - | - | - |
|
763 |
+
| 3.5556 | 52 | 2.1501 | - | - | - | - | - |
|
764 |
+
| 3.6239 | 53 | 1.4505 | - | - | - | - | - |
|
765 |
+
| 3.6923 | 54 | 1.8575 | - | - | - | - | - |
|
766 |
+
| 3.7607 | 55 | 2.3882 | - | - | - | - | - |
|
767 |
+
| 3.8291 | 56 | 2.1119 | - | - | - | - | - |
|
768 |
+
| 3.8974 | 57 | 1.8992 | - | - | - | - | - |
|
769 |
+
| 3.9658 | 58 | 1.8323 | 0.3117 | 0.3365 | 0.3558 | 0.2683 | 0.3670 |
|
770 |
+
| 4.0342 | 59 | 1.5938 | - | - | - | - | - |
|
771 |
+
| 4.1026 | 60 | 1.552 | - | - | - | - | - |
|
772 |
+
| 4.1709 | 61 | 1.907 | - | - | - | - | - |
|
773 |
+
| 4.2393 | 62 | 1.8304 | - | - | - | - | - |
|
774 |
+
| 4.3077 | 63 | 1.8775 | - | - | - | - | - |
|
775 |
+
| 4.3761 | 64 | 1.8654 | - | - | - | - | - |
|
776 |
+
| 4.4444 | 65 | 1.7944 | - | - | - | - | - |
|
777 |
+
| 4.5128 | 66 | 1.8335 | - | - | - | - | - |
|
778 |
+
| 4.5812 | 67 | 1.8823 | - | - | - | - | - |
|
779 |
+
| 4.6496 | 68 | 1.6479 | - | - | - | - | - |
|
780 |
+
| 4.7179 | 69 | 1.5771 | - | - | - | - | - |
|
781 |
+
| **4.7863** | **70** | **2.1911** | **0.3117** | **0.3351** | **0.3564** | **0.2704** | **0.3672** |
|
782 |
+
|
783 |
+
* The bold row denotes the saved checkpoint.
|
784 |
+
|
785 |
+
### Framework Versions
|
786 |
+
- Python: 3.12.2
|
787 |
+
- Sentence Transformers: 3.0.0
|
788 |
+
- Transformers: 4.41.2
|
789 |
+
- PyTorch: 2.3.1
|
790 |
+
- Accelerate: 0.27.2
|
791 |
+
- Datasets: 2.19.1
|
792 |
+
- Tokenizers: 0.19.1
|
793 |
+
|
794 |
+
## Citation
|
795 |
+
|
796 |
+
### BibTeX
|
797 |
+
|
798 |
+
#### Sentence Transformers
|
799 |
+
```bibtex
|
800 |
+
@inproceedings{reimers-2019-sentence-bert,
|
801 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
802 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
803 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
804 |
+
month = "11",
|
805 |
+
year = "2019",
|
806 |
+
publisher = "Association for Computational Linguistics",
|
807 |
+
url = "https://arxiv.org/abs/1908.10084",
|
808 |
+
}
|
809 |
+
```
|
810 |
+
|
811 |
+
#### MatryoshkaLoss
|
812 |
+
```bibtex
|
813 |
+
@misc{kusupati2024matryoshka,
|
814 |
+
title={Matryoshka Representation Learning},
|
815 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
816 |
+
year={2024},
|
817 |
+
eprint={2205.13147},
|
818 |
+
archivePrefix={arXiv},
|
819 |
+
primaryClass={cs.LG}
|
820 |
+
}
|
821 |
+
```
|
822 |
+
|
823 |
+
#### MultipleNegativesRankingLoss
|
824 |
+
```bibtex
|
825 |
+
@misc{henderson2017efficient,
|
826 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
827 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
828 |
+
year={2017},
|
829 |
+
eprint={1705.00652},
|
830 |
+
archivePrefix={arXiv},
|
831 |
+
primaryClass={cs.CL}
|
832 |
+
}
|
833 |
+
```
|
834 |
+
|
835 |
+
<!--
|
836 |
+
## Glossary
|
837 |
+
|
838 |
+
*Clearly define terms in order to be accessible across audiences.*
|
839 |
+
-->
|
840 |
+
|
841 |
+
<!--
|
842 |
+
## Model Card Authors
|
843 |
+
|
844 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
845 |
+
-->
|
846 |
+
|
847 |
+
<!--
|
848 |
+
## Model Card Contact
|
849 |
+
|
850 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
851 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "models/snowflake-arctic-embed-m-klej-dyk-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.41.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.7.0.dev0",
|
4 |
+
"transformers": "4.39.3",
|
5 |
+
"pytorch": "2.1.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"query": "Represent this sentence for searching relevant passages: "
|
9 |
+
},
|
10 |
+
"default_prompt_name": null,
|
11 |
+
"similarity_fn_name": null
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11b76690dcbee05cc5e2b8bb778c18bee047eb1a9187844e4664a967a4b8dea7
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 512,
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_to_multiple_of": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"pad_token_type_id": 0,
|
53 |
+
"padding_side": "right",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"stride": 0,
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "BertTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|