nanmoon commited on
Commit
a1088ab
1 Parent(s): be08dcd
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,3 +1,2692 @@
1
  ---
 
 
 
 
 
 
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - mteb
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ language: en
8
  license: mit
9
+ model-index:
10
+ - name: ember_v1
11
+ results:
12
+ - task:
13
+ type: Classification
14
+ dataset:
15
+ type: mteb/amazon_counterfactual
16
+ name: MTEB AmazonCounterfactualClassification (en)
17
+ config: en
18
+ split: test
19
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
20
+ metrics:
21
+ - type: accuracy
22
+ value: 76.05970149253731
23
+ - type: ap
24
+ value: 38.76045348512767
25
+ - type: f1
26
+ value: 69.8824007294685
27
+ - task:
28
+ type: Classification
29
+ dataset:
30
+ type: mteb/amazon_polarity
31
+ name: MTEB AmazonPolarityClassification
32
+ config: default
33
+ split: test
34
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
35
+ metrics:
36
+ - type: accuracy
37
+ value: 91.977
38
+ - type: ap
39
+ value: 88.63507587170176
40
+ - type: f1
41
+ value: 91.9524133311038
42
+ - task:
43
+ type: Classification
44
+ dataset:
45
+ type: mteb/amazon_reviews_multi
46
+ name: MTEB AmazonReviewsClassification (en)
47
+ config: en
48
+ split: test
49
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
50
+ metrics:
51
+ - type: accuracy
52
+ value: 47.938
53
+ - type: f1
54
+ value: 47.58273047536129
55
+ - task:
56
+ type: Retrieval
57
+ dataset:
58
+ type: arguana
59
+ name: MTEB ArguAna
60
+ config: default
61
+ split: test
62
+ revision: None
63
+ metrics:
64
+ - type: map_at_1
65
+ value: 41.252
66
+ - type: map_at_10
67
+ value: 56.567
68
+ - type: map_at_100
69
+ value: 57.07600000000001
70
+ - type: map_at_1000
71
+ value: 57.08
72
+ - type: map_at_3
73
+ value: 52.394
74
+ - type: map_at_5
75
+ value: 55.055
76
+ - type: mrr_at_1
77
+ value: 42.39
78
+ - type: mrr_at_10
79
+ value: 57.001999999999995
80
+ - type: mrr_at_100
81
+ value: 57.531
82
+ - type: mrr_at_1000
83
+ value: 57.535000000000004
84
+ - type: mrr_at_3
85
+ value: 52.845
86
+ - type: mrr_at_5
87
+ value: 55.47299999999999
88
+ - type: ndcg_at_1
89
+ value: 41.252
90
+ - type: ndcg_at_10
91
+ value: 64.563
92
+ - type: ndcg_at_100
93
+ value: 66.667
94
+ - type: ndcg_at_1000
95
+ value: 66.77
96
+ - type: ndcg_at_3
97
+ value: 56.120000000000005
98
+ - type: ndcg_at_5
99
+ value: 60.889
100
+ - type: precision_at_1
101
+ value: 41.252
102
+ - type: precision_at_10
103
+ value: 8.982999999999999
104
+ - type: precision_at_100
105
+ value: 0.989
106
+ - type: precision_at_1000
107
+ value: 0.1
108
+ - type: precision_at_3
109
+ value: 22.309
110
+ - type: precision_at_5
111
+ value: 15.690000000000001
112
+ - type: recall_at_1
113
+ value: 41.252
114
+ - type: recall_at_10
115
+ value: 89.82900000000001
116
+ - type: recall_at_100
117
+ value: 98.86200000000001
118
+ - type: recall_at_1000
119
+ value: 99.644
120
+ - type: recall_at_3
121
+ value: 66.927
122
+ - type: recall_at_5
123
+ value: 78.45
124
+ - task:
125
+ type: Clustering
126
+ dataset:
127
+ type: mteb/arxiv-clustering-p2p
128
+ name: MTEB ArxivClusteringP2P
129
+ config: default
130
+ split: test
131
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
132
+ metrics:
133
+ - type: v_measure
134
+ value: 48.5799968717232
135
+ - task:
136
+ type: Clustering
137
+ dataset:
138
+ type: mteb/arxiv-clustering-s2s
139
+ name: MTEB ArxivClusteringS2S
140
+ config: default
141
+ split: test
142
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
143
+ metrics:
144
+ - type: v_measure
145
+ value: 43.142844164856136
146
+ - task:
147
+ type: Reranking
148
+ dataset:
149
+ type: mteb/askubuntudupquestions-reranking
150
+ name: MTEB AskUbuntuDupQuestions
151
+ config: default
152
+ split: test
153
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
154
+ metrics:
155
+ - type: map
156
+ value: 64.45997990276463
157
+ - type: mrr
158
+ value: 77.85560392208592
159
+ - task:
160
+ type: STS
161
+ dataset:
162
+ type: mteb/biosses-sts
163
+ name: MTEB BIOSSES
164
+ config: default
165
+ split: test
166
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
167
+ metrics:
168
+ - type: cos_sim_pearson
169
+ value: 86.38299310075898
170
+ - type: cos_sim_spearman
171
+ value: 85.81038898286454
172
+ - type: euclidean_pearson
173
+ value: 84.28002556389774
174
+ - type: euclidean_spearman
175
+ value: 85.80315990248238
176
+ - type: manhattan_pearson
177
+ value: 83.9755390675032
178
+ - type: manhattan_spearman
179
+ value: 85.30435335611396
180
+ - task:
181
+ type: Classification
182
+ dataset:
183
+ type: mteb/banking77
184
+ name: MTEB Banking77Classification
185
+ config: default
186
+ split: test
187
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
188
+ metrics:
189
+ - type: accuracy
190
+ value: 87.89935064935065
191
+ - type: f1
192
+ value: 87.87886687103833
193
+ - task:
194
+ type: Clustering
195
+ dataset:
196
+ type: mteb/biorxiv-clustering-p2p
197
+ name: MTEB BiorxivClusteringP2P
198
+ config: default
199
+ split: test
200
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
201
+ metrics:
202
+ - type: v_measure
203
+ value: 38.84335510371379
204
+ - task:
205
+ type: Clustering
206
+ dataset:
207
+ type: mteb/biorxiv-clustering-s2s
208
+ name: MTEB BiorxivClusteringS2S
209
+ config: default
210
+ split: test
211
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
212
+ metrics:
213
+ - type: v_measure
214
+ value: 36.377963093857005
215
+ - task:
216
+ type: Retrieval
217
+ dataset:
218
+ type: BeIR/cqadupstack
219
+ name: MTEB CQADupstackAndroidRetrieval
220
+ config: default
221
+ split: test
222
+ revision: None
223
+ metrics:
224
+ - type: map_at_1
225
+ value: 32.557
226
+ - type: map_at_10
227
+ value: 44.501000000000005
228
+ - type: map_at_100
229
+ value: 46.11
230
+ - type: map_at_1000
231
+ value: 46.232
232
+ - type: map_at_3
233
+ value: 40.711000000000006
234
+ - type: map_at_5
235
+ value: 42.937
236
+ - type: mrr_at_1
237
+ value: 40.916000000000004
238
+ - type: mrr_at_10
239
+ value: 51.317
240
+ - type: mrr_at_100
241
+ value: 52.003
242
+ - type: mrr_at_1000
243
+ value: 52.044999999999995
244
+ - type: mrr_at_3
245
+ value: 48.569
246
+ - type: mrr_at_5
247
+ value: 50.322
248
+ - type: ndcg_at_1
249
+ value: 40.916000000000004
250
+ - type: ndcg_at_10
251
+ value: 51.353
252
+ - type: ndcg_at_100
253
+ value: 56.762
254
+ - type: ndcg_at_1000
255
+ value: 58.555
256
+ - type: ndcg_at_3
257
+ value: 46.064
258
+ - type: ndcg_at_5
259
+ value: 48.677
260
+ - type: precision_at_1
261
+ value: 40.916000000000004
262
+ - type: precision_at_10
263
+ value: 9.927999999999999
264
+ - type: precision_at_100
265
+ value: 1.592
266
+ - type: precision_at_1000
267
+ value: 0.20600000000000002
268
+ - type: precision_at_3
269
+ value: 22.078999999999997
270
+ - type: precision_at_5
271
+ value: 16.08
272
+ - type: recall_at_1
273
+ value: 32.557
274
+ - type: recall_at_10
275
+ value: 63.942
276
+ - type: recall_at_100
277
+ value: 86.436
278
+ - type: recall_at_1000
279
+ value: 97.547
280
+ - type: recall_at_3
281
+ value: 48.367
282
+ - type: recall_at_5
283
+ value: 55.818
284
+ - task:
285
+ type: Retrieval
286
+ dataset:
287
+ type: BeIR/cqadupstack
288
+ name: MTEB CQADupstackEnglishRetrieval
289
+ config: default
290
+ split: test
291
+ revision: None
292
+ metrics:
293
+ - type: map_at_1
294
+ value: 32.106
295
+ - type: map_at_10
296
+ value: 42.55
297
+ - type: map_at_100
298
+ value: 43.818
299
+ - type: map_at_1000
300
+ value: 43.952999999999996
301
+ - type: map_at_3
302
+ value: 39.421
303
+ - type: map_at_5
304
+ value: 41.276
305
+ - type: mrr_at_1
306
+ value: 39.936
307
+ - type: mrr_at_10
308
+ value: 48.484
309
+ - type: mrr_at_100
310
+ value: 49.123
311
+ - type: mrr_at_1000
312
+ value: 49.163000000000004
313
+ - type: mrr_at_3
314
+ value: 46.221000000000004
315
+ - type: mrr_at_5
316
+ value: 47.603
317
+ - type: ndcg_at_1
318
+ value: 39.936
319
+ - type: ndcg_at_10
320
+ value: 48.25
321
+ - type: ndcg_at_100
322
+ value: 52.674
323
+ - type: ndcg_at_1000
324
+ value: 54.638
325
+ - type: ndcg_at_3
326
+ value: 44.05
327
+ - type: ndcg_at_5
328
+ value: 46.125
329
+ - type: precision_at_1
330
+ value: 39.936
331
+ - type: precision_at_10
332
+ value: 9.096
333
+ - type: precision_at_100
334
+ value: 1.473
335
+ - type: precision_at_1000
336
+ value: 0.19499999999999998
337
+ - type: precision_at_3
338
+ value: 21.295
339
+ - type: precision_at_5
340
+ value: 15.121
341
+ - type: recall_at_1
342
+ value: 32.106
343
+ - type: recall_at_10
344
+ value: 58.107
345
+ - type: recall_at_100
346
+ value: 76.873
347
+ - type: recall_at_1000
348
+ value: 89.079
349
+ - type: recall_at_3
350
+ value: 45.505
351
+ - type: recall_at_5
352
+ value: 51.479
353
+ - task:
354
+ type: Retrieval
355
+ dataset:
356
+ type: BeIR/cqadupstack
357
+ name: MTEB CQADupstackGamingRetrieval
358
+ config: default
359
+ split: test
360
+ revision: None
361
+ metrics:
362
+ - type: map_at_1
363
+ value: 41.513
364
+ - type: map_at_10
365
+ value: 54.571999999999996
366
+ - type: map_at_100
367
+ value: 55.579
368
+ - type: map_at_1000
369
+ value: 55.626
370
+ - type: map_at_3
371
+ value: 51.127
372
+ - type: map_at_5
373
+ value: 53.151
374
+ - type: mrr_at_1
375
+ value: 47.398
376
+ - type: mrr_at_10
377
+ value: 57.82000000000001
378
+ - type: mrr_at_100
379
+ value: 58.457
380
+ - type: mrr_at_1000
381
+ value: 58.479000000000006
382
+ - type: mrr_at_3
383
+ value: 55.32899999999999
384
+ - type: mrr_at_5
385
+ value: 56.89999999999999
386
+ - type: ndcg_at_1
387
+ value: 47.398
388
+ - type: ndcg_at_10
389
+ value: 60.599000000000004
390
+ - type: ndcg_at_100
391
+ value: 64.366
392
+ - type: ndcg_at_1000
393
+ value: 65.333
394
+ - type: ndcg_at_3
395
+ value: 54.98
396
+ - type: ndcg_at_5
397
+ value: 57.874
398
+ - type: precision_at_1
399
+ value: 47.398
400
+ - type: precision_at_10
401
+ value: 9.806
402
+ - type: precision_at_100
403
+ value: 1.2590000000000001
404
+ - type: precision_at_1000
405
+ value: 0.13799999999999998
406
+ - type: precision_at_3
407
+ value: 24.619
408
+ - type: precision_at_5
409
+ value: 16.878
410
+ - type: recall_at_1
411
+ value: 41.513
412
+ - type: recall_at_10
413
+ value: 74.91799999999999
414
+ - type: recall_at_100
415
+ value: 90.96
416
+ - type: recall_at_1000
417
+ value: 97.923
418
+ - type: recall_at_3
419
+ value: 60.013000000000005
420
+ - type: recall_at_5
421
+ value: 67.245
422
+ - task:
423
+ type: Retrieval
424
+ dataset:
425
+ type: BeIR/cqadupstack
426
+ name: MTEB CQADupstackGisRetrieval
427
+ config: default
428
+ split: test
429
+ revision: None
430
+ metrics:
431
+ - type: map_at_1
432
+ value: 26.319
433
+ - type: map_at_10
434
+ value: 35.766999999999996
435
+ - type: map_at_100
436
+ value: 36.765
437
+ - type: map_at_1000
438
+ value: 36.829
439
+ - type: map_at_3
440
+ value: 32.888
441
+ - type: map_at_5
442
+ value: 34.538999999999994
443
+ - type: mrr_at_1
444
+ value: 28.249000000000002
445
+ - type: mrr_at_10
446
+ value: 37.766
447
+ - type: mrr_at_100
448
+ value: 38.62
449
+ - type: mrr_at_1000
450
+ value: 38.667
451
+ - type: mrr_at_3
452
+ value: 35.009
453
+ - type: mrr_at_5
454
+ value: 36.608000000000004
455
+ - type: ndcg_at_1
456
+ value: 28.249000000000002
457
+ - type: ndcg_at_10
458
+ value: 41.215
459
+ - type: ndcg_at_100
460
+ value: 46.274
461
+ - type: ndcg_at_1000
462
+ value: 48.007
463
+ - type: ndcg_at_3
464
+ value: 35.557
465
+ - type: ndcg_at_5
466
+ value: 38.344
467
+ - type: precision_at_1
468
+ value: 28.249000000000002
469
+ - type: precision_at_10
470
+ value: 6.429
471
+ - type: precision_at_100
472
+ value: 0.9480000000000001
473
+ - type: precision_at_1000
474
+ value: 0.11399999999999999
475
+ - type: precision_at_3
476
+ value: 15.179
477
+ - type: precision_at_5
478
+ value: 10.734
479
+ - type: recall_at_1
480
+ value: 26.319
481
+ - type: recall_at_10
482
+ value: 56.157999999999994
483
+ - type: recall_at_100
484
+ value: 79.65
485
+ - type: recall_at_1000
486
+ value: 92.73
487
+ - type: recall_at_3
488
+ value: 40.738
489
+ - type: recall_at_5
490
+ value: 47.418
491
+ - task:
492
+ type: Retrieval
493
+ dataset:
494
+ type: BeIR/cqadupstack
495
+ name: MTEB CQADupstackMathematicaRetrieval
496
+ config: default
497
+ split: test
498
+ revision: None
499
+ metrics:
500
+ - type: map_at_1
501
+ value: 18.485
502
+ - type: map_at_10
503
+ value: 27.400999999999996
504
+ - type: map_at_100
505
+ value: 28.665000000000003
506
+ - type: map_at_1000
507
+ value: 28.79
508
+ - type: map_at_3
509
+ value: 24.634
510
+ - type: map_at_5
511
+ value: 26.313
512
+ - type: mrr_at_1
513
+ value: 23.134
514
+ - type: mrr_at_10
515
+ value: 32.332
516
+ - type: mrr_at_100
517
+ value: 33.318
518
+ - type: mrr_at_1000
519
+ value: 33.384
520
+ - type: mrr_at_3
521
+ value: 29.664
522
+ - type: mrr_at_5
523
+ value: 31.262
524
+ - type: ndcg_at_1
525
+ value: 23.134
526
+ - type: ndcg_at_10
527
+ value: 33.016
528
+ - type: ndcg_at_100
529
+ value: 38.763
530
+ - type: ndcg_at_1000
531
+ value: 41.619
532
+ - type: ndcg_at_3
533
+ value: 28.017999999999997
534
+ - type: ndcg_at_5
535
+ value: 30.576999999999998
536
+ - type: precision_at_1
537
+ value: 23.134
538
+ - type: precision_at_10
539
+ value: 6.069999999999999
540
+ - type: precision_at_100
541
+ value: 1.027
542
+ - type: precision_at_1000
543
+ value: 0.14200000000000002
544
+ - type: precision_at_3
545
+ value: 13.599
546
+ - type: precision_at_5
547
+ value: 9.975000000000001
548
+ - type: recall_at_1
549
+ value: 18.485
550
+ - type: recall_at_10
551
+ value: 45.39
552
+ - type: recall_at_100
553
+ value: 69.876
554
+ - type: recall_at_1000
555
+ value: 90.023
556
+ - type: recall_at_3
557
+ value: 31.587
558
+ - type: recall_at_5
559
+ value: 38.164
560
+ - task:
561
+ type: Retrieval
562
+ dataset:
563
+ type: BeIR/cqadupstack
564
+ name: MTEB CQADupstackPhysicsRetrieval
565
+ config: default
566
+ split: test
567
+ revision: None
568
+ metrics:
569
+ - type: map_at_1
570
+ value: 30.676
571
+ - type: map_at_10
572
+ value: 41.785
573
+ - type: map_at_100
574
+ value: 43.169000000000004
575
+ - type: map_at_1000
576
+ value: 43.272
577
+ - type: map_at_3
578
+ value: 38.462
579
+ - type: map_at_5
580
+ value: 40.32
581
+ - type: mrr_at_1
582
+ value: 37.729
583
+ - type: mrr_at_10
584
+ value: 47.433
585
+ - type: mrr_at_100
586
+ value: 48.303000000000004
587
+ - type: mrr_at_1000
588
+ value: 48.337
589
+ - type: mrr_at_3
590
+ value: 45.011
591
+ - type: mrr_at_5
592
+ value: 46.455
593
+ - type: ndcg_at_1
594
+ value: 37.729
595
+ - type: ndcg_at_10
596
+ value: 47.921
597
+ - type: ndcg_at_100
598
+ value: 53.477
599
+ - type: ndcg_at_1000
600
+ value: 55.300000000000004
601
+ - type: ndcg_at_3
602
+ value: 42.695
603
+ - type: ndcg_at_5
604
+ value: 45.175
605
+ - type: precision_at_1
606
+ value: 37.729
607
+ - type: precision_at_10
608
+ value: 8.652999999999999
609
+ - type: precision_at_100
610
+ value: 1.336
611
+ - type: precision_at_1000
612
+ value: 0.168
613
+ - type: precision_at_3
614
+ value: 20.18
615
+ - type: precision_at_5
616
+ value: 14.302000000000001
617
+ - type: recall_at_1
618
+ value: 30.676
619
+ - type: recall_at_10
620
+ value: 60.441
621
+ - type: recall_at_100
622
+ value: 83.37
623
+ - type: recall_at_1000
624
+ value: 95.092
625
+ - type: recall_at_3
626
+ value: 45.964
627
+ - type: recall_at_5
628
+ value: 52.319
629
+ - task:
630
+ type: Retrieval
631
+ dataset:
632
+ type: BeIR/cqadupstack
633
+ name: MTEB CQADupstackProgrammersRetrieval
634
+ config: default
635
+ split: test
636
+ revision: None
637
+ metrics:
638
+ - type: map_at_1
639
+ value: 24.978
640
+ - type: map_at_10
641
+ value: 35.926
642
+ - type: map_at_100
643
+ value: 37.341
644
+ - type: map_at_1000
645
+ value: 37.445
646
+ - type: map_at_3
647
+ value: 32.748
648
+ - type: map_at_5
649
+ value: 34.207
650
+ - type: mrr_at_1
651
+ value: 31.163999999999998
652
+ - type: mrr_at_10
653
+ value: 41.394
654
+ - type: mrr_at_100
655
+ value: 42.321
656
+ - type: mrr_at_1000
657
+ value: 42.368
658
+ - type: mrr_at_3
659
+ value: 38.964999999999996
660
+ - type: mrr_at_5
661
+ value: 40.135
662
+ - type: ndcg_at_1
663
+ value: 31.163999999999998
664
+ - type: ndcg_at_10
665
+ value: 42.191
666
+ - type: ndcg_at_100
667
+ value: 48.083999999999996
668
+ - type: ndcg_at_1000
669
+ value: 50.21
670
+ - type: ndcg_at_3
671
+ value: 36.979
672
+ - type: ndcg_at_5
673
+ value: 38.823
674
+ - type: precision_at_1
675
+ value: 31.163999999999998
676
+ - type: precision_at_10
677
+ value: 7.968
678
+ - type: precision_at_100
679
+ value: 1.2550000000000001
680
+ - type: precision_at_1000
681
+ value: 0.16199999999999998
682
+ - type: precision_at_3
683
+ value: 18.075
684
+ - type: precision_at_5
685
+ value: 12.626000000000001
686
+ - type: recall_at_1
687
+ value: 24.978
688
+ - type: recall_at_10
689
+ value: 55.410000000000004
690
+ - type: recall_at_100
691
+ value: 80.562
692
+ - type: recall_at_1000
693
+ value: 94.77600000000001
694
+ - type: recall_at_3
695
+ value: 40.359
696
+ - type: recall_at_5
697
+ value: 45.577
698
+ - task:
699
+ type: Retrieval
700
+ dataset:
701
+ type: BeIR/cqadupstack
702
+ name: MTEB CQADupstackRetrieval
703
+ config: default
704
+ split: test
705
+ revision: None
706
+ metrics:
707
+ - type: map_at_1
708
+ value: 26.812166666666666
709
+ - type: map_at_10
710
+ value: 36.706916666666665
711
+ - type: map_at_100
712
+ value: 37.94016666666666
713
+ - type: map_at_1000
714
+ value: 38.05358333333333
715
+ - type: map_at_3
716
+ value: 33.72408333333334
717
+ - type: map_at_5
718
+ value: 35.36508333333333
719
+ - type: mrr_at_1
720
+ value: 31.91516666666667
721
+ - type: mrr_at_10
722
+ value: 41.09716666666666
723
+ - type: mrr_at_100
724
+ value: 41.931916666666666
725
+ - type: mrr_at_1000
726
+ value: 41.98458333333333
727
+ - type: mrr_at_3
728
+ value: 38.60183333333333
729
+ - type: mrr_at_5
730
+ value: 40.031916666666675
731
+ - type: ndcg_at_1
732
+ value: 31.91516666666667
733
+ - type: ndcg_at_10
734
+ value: 42.38725
735
+ - type: ndcg_at_100
736
+ value: 47.56291666666667
737
+ - type: ndcg_at_1000
738
+ value: 49.716499999999996
739
+ - type: ndcg_at_3
740
+ value: 37.36491666666667
741
+ - type: ndcg_at_5
742
+ value: 39.692166666666665
743
+ - type: precision_at_1
744
+ value: 31.91516666666667
745
+ - type: precision_at_10
746
+ value: 7.476749999999999
747
+ - type: precision_at_100
748
+ value: 1.1869166666666668
749
+ - type: precision_at_1000
750
+ value: 0.157
751
+ - type: precision_at_3
752
+ value: 17.275249999999996
753
+ - type: precision_at_5
754
+ value: 12.25825
755
+ - type: recall_at_1
756
+ value: 26.812166666666666
757
+ - type: recall_at_10
758
+ value: 54.82933333333333
759
+ - type: recall_at_100
760
+ value: 77.36508333333333
761
+ - type: recall_at_1000
762
+ value: 92.13366666666667
763
+ - type: recall_at_3
764
+ value: 40.83508333333334
765
+ - type: recall_at_5
766
+ value: 46.85083333333334
767
+ - task:
768
+ type: Retrieval
769
+ dataset:
770
+ type: BeIR/cqadupstack
771
+ name: MTEB CQADupstackStatsRetrieval
772
+ config: default
773
+ split: test
774
+ revision: None
775
+ metrics:
776
+ - type: map_at_1
777
+ value: 25.352999999999998
778
+ - type: map_at_10
779
+ value: 33.025999999999996
780
+ - type: map_at_100
781
+ value: 33.882
782
+ - type: map_at_1000
783
+ value: 33.983999999999995
784
+ - type: map_at_3
785
+ value: 30.995
786
+ - type: map_at_5
787
+ value: 32.113
788
+ - type: mrr_at_1
789
+ value: 28.834
790
+ - type: mrr_at_10
791
+ value: 36.14
792
+ - type: mrr_at_100
793
+ value: 36.815
794
+ - type: mrr_at_1000
795
+ value: 36.893
796
+ - type: mrr_at_3
797
+ value: 34.305
798
+ - type: mrr_at_5
799
+ value: 35.263
800
+ - type: ndcg_at_1
801
+ value: 28.834
802
+ - type: ndcg_at_10
803
+ value: 37.26
804
+ - type: ndcg_at_100
805
+ value: 41.723
806
+ - type: ndcg_at_1000
807
+ value: 44.314
808
+ - type: ndcg_at_3
809
+ value: 33.584
810
+ - type: ndcg_at_5
811
+ value: 35.302
812
+ - type: precision_at_1
813
+ value: 28.834
814
+ - type: precision_at_10
815
+ value: 5.736
816
+ - type: precision_at_100
817
+ value: 0.876
818
+ - type: precision_at_1000
819
+ value: 0.117
820
+ - type: precision_at_3
821
+ value: 14.468
822
+ - type: precision_at_5
823
+ value: 9.847
824
+ - type: recall_at_1
825
+ value: 25.352999999999998
826
+ - type: recall_at_10
827
+ value: 47.155
828
+ - type: recall_at_100
829
+ value: 68.024
830
+ - type: recall_at_1000
831
+ value: 87.26899999999999
832
+ - type: recall_at_3
833
+ value: 37.074
834
+ - type: recall_at_5
835
+ value: 41.352
836
+ - task:
837
+ type: Retrieval
838
+ dataset:
839
+ type: BeIR/cqadupstack
840
+ name: MTEB CQADupstackTexRetrieval
841
+ config: default
842
+ split: test
843
+ revision: None
844
+ metrics:
845
+ - type: map_at_1
846
+ value: 17.845
847
+ - type: map_at_10
848
+ value: 25.556
849
+ - type: map_at_100
850
+ value: 26.787
851
+ - type: map_at_1000
852
+ value: 26.913999999999998
853
+ - type: map_at_3
854
+ value: 23.075000000000003
855
+ - type: map_at_5
856
+ value: 24.308
857
+ - type: mrr_at_1
858
+ value: 21.714
859
+ - type: mrr_at_10
860
+ value: 29.543999999999997
861
+ - type: mrr_at_100
862
+ value: 30.543
863
+ - type: mrr_at_1000
864
+ value: 30.618000000000002
865
+ - type: mrr_at_3
866
+ value: 27.174
867
+ - type: mrr_at_5
868
+ value: 28.409000000000002
869
+ - type: ndcg_at_1
870
+ value: 21.714
871
+ - type: ndcg_at_10
872
+ value: 30.562
873
+ - type: ndcg_at_100
874
+ value: 36.27
875
+ - type: ndcg_at_1000
876
+ value: 39.033
877
+ - type: ndcg_at_3
878
+ value: 26.006
879
+ - type: ndcg_at_5
880
+ value: 27.843
881
+ - type: precision_at_1
882
+ value: 21.714
883
+ - type: precision_at_10
884
+ value: 5.657
885
+ - type: precision_at_100
886
+ value: 1.0
887
+ - type: precision_at_1000
888
+ value: 0.14100000000000001
889
+ - type: precision_at_3
890
+ value: 12.4
891
+ - type: precision_at_5
892
+ value: 8.863999999999999
893
+ - type: recall_at_1
894
+ value: 17.845
895
+ - type: recall_at_10
896
+ value: 41.72
897
+ - type: recall_at_100
898
+ value: 67.06400000000001
899
+ - type: recall_at_1000
900
+ value: 86.515
901
+ - type: recall_at_3
902
+ value: 28.78
903
+ - type: recall_at_5
904
+ value: 33.629999999999995
905
+ - task:
906
+ type: Retrieval
907
+ dataset:
908
+ type: BeIR/cqadupstack
909
+ name: MTEB CQADupstackUnixRetrieval
910
+ config: default
911
+ split: test
912
+ revision: None
913
+ metrics:
914
+ - type: map_at_1
915
+ value: 26.695
916
+ - type: map_at_10
917
+ value: 36.205999999999996
918
+ - type: map_at_100
919
+ value: 37.346000000000004
920
+ - type: map_at_1000
921
+ value: 37.447
922
+ - type: map_at_3
923
+ value: 32.84
924
+ - type: map_at_5
925
+ value: 34.733000000000004
926
+ - type: mrr_at_1
927
+ value: 31.343
928
+ - type: mrr_at_10
929
+ value: 40.335
930
+ - type: mrr_at_100
931
+ value: 41.162
932
+ - type: mrr_at_1000
933
+ value: 41.221000000000004
934
+ - type: mrr_at_3
935
+ value: 37.329
936
+ - type: mrr_at_5
937
+ value: 39.068999999999996
938
+ - type: ndcg_at_1
939
+ value: 31.343
940
+ - type: ndcg_at_10
941
+ value: 41.996
942
+ - type: ndcg_at_100
943
+ value: 47.096
944
+ - type: ndcg_at_1000
945
+ value: 49.4
946
+ - type: ndcg_at_3
947
+ value: 35.902
948
+ - type: ndcg_at_5
949
+ value: 38.848
950
+ - type: precision_at_1
951
+ value: 31.343
952
+ - type: precision_at_10
953
+ value: 7.146
954
+ - type: precision_at_100
955
+ value: 1.098
956
+ - type: precision_at_1000
957
+ value: 0.14100000000000001
958
+ - type: precision_at_3
959
+ value: 16.014
960
+ - type: precision_at_5
961
+ value: 11.735
962
+ - type: recall_at_1
963
+ value: 26.695
964
+ - type: recall_at_10
965
+ value: 55.525000000000006
966
+ - type: recall_at_100
967
+ value: 77.376
968
+ - type: recall_at_1000
969
+ value: 93.476
970
+ - type: recall_at_3
971
+ value: 39.439
972
+ - type: recall_at_5
973
+ value: 46.501
974
+ - task:
975
+ type: Retrieval
976
+ dataset:
977
+ type: BeIR/cqadupstack
978
+ name: MTEB CQADupstackWebmastersRetrieval
979
+ config: default
980
+ split: test
981
+ revision: None
982
+ metrics:
983
+ - type: map_at_1
984
+ value: 24.196
985
+ - type: map_at_10
986
+ value: 33.516
987
+ - type: map_at_100
988
+ value: 35.202
989
+ - type: map_at_1000
990
+ value: 35.426
991
+ - type: map_at_3
992
+ value: 30.561
993
+ - type: map_at_5
994
+ value: 31.961000000000002
995
+ - type: mrr_at_1
996
+ value: 29.644
997
+ - type: mrr_at_10
998
+ value: 38.769
999
+ - type: mrr_at_100
1000
+ value: 39.843
1001
+ - type: mrr_at_1000
1002
+ value: 39.888
1003
+ - type: mrr_at_3
1004
+ value: 36.132999999999996
1005
+ - type: mrr_at_5
1006
+ value: 37.467
1007
+ - type: ndcg_at_1
1008
+ value: 29.644
1009
+ - type: ndcg_at_10
1010
+ value: 39.584
1011
+ - type: ndcg_at_100
1012
+ value: 45.964
1013
+ - type: ndcg_at_1000
1014
+ value: 48.27
1015
+ - type: ndcg_at_3
1016
+ value: 34.577999999999996
1017
+ - type: ndcg_at_5
1018
+ value: 36.498000000000005
1019
+ - type: precision_at_1
1020
+ value: 29.644
1021
+ - type: precision_at_10
1022
+ value: 7.668
1023
+ - type: precision_at_100
1024
+ value: 1.545
1025
+ - type: precision_at_1000
1026
+ value: 0.242
1027
+ - type: precision_at_3
1028
+ value: 16.271
1029
+ - type: precision_at_5
1030
+ value: 11.620999999999999
1031
+ - type: recall_at_1
1032
+ value: 24.196
1033
+ - type: recall_at_10
1034
+ value: 51.171
1035
+ - type: recall_at_100
1036
+ value: 79.212
1037
+ - type: recall_at_1000
1038
+ value: 92.976
1039
+ - type: recall_at_3
1040
+ value: 36.797999999999995
1041
+ - type: recall_at_5
1042
+ value: 42.006
1043
+ - task:
1044
+ type: Retrieval
1045
+ dataset:
1046
+ type: BeIR/cqadupstack
1047
+ name: MTEB CQADupstackWordpressRetrieval
1048
+ config: default
1049
+ split: test
1050
+ revision: None
1051
+ metrics:
1052
+ - type: map_at_1
1053
+ value: 21.023
1054
+ - type: map_at_10
1055
+ value: 29.677
1056
+ - type: map_at_100
1057
+ value: 30.618000000000002
1058
+ - type: map_at_1000
1059
+ value: 30.725
1060
+ - type: map_at_3
1061
+ value: 27.227
1062
+ - type: map_at_5
1063
+ value: 28.523
1064
+ - type: mrr_at_1
1065
+ value: 22.921
1066
+ - type: mrr_at_10
1067
+ value: 31.832
1068
+ - type: mrr_at_100
1069
+ value: 32.675
1070
+ - type: mrr_at_1000
1071
+ value: 32.751999999999995
1072
+ - type: mrr_at_3
1073
+ value: 29.513
1074
+ - type: mrr_at_5
1075
+ value: 30.89
1076
+ - type: ndcg_at_1
1077
+ value: 22.921
1078
+ - type: ndcg_at_10
1079
+ value: 34.699999999999996
1080
+ - type: ndcg_at_100
1081
+ value: 39.302
1082
+ - type: ndcg_at_1000
1083
+ value: 41.919000000000004
1084
+ - type: ndcg_at_3
1085
+ value: 29.965999999999998
1086
+ - type: ndcg_at_5
1087
+ value: 32.22
1088
+ - type: precision_at_1
1089
+ value: 22.921
1090
+ - type: precision_at_10
1091
+ value: 5.564
1092
+ - type: precision_at_100
1093
+ value: 0.8340000000000001
1094
+ - type: precision_at_1000
1095
+ value: 0.11800000000000001
1096
+ - type: precision_at_3
1097
+ value: 13.123999999999999
1098
+ - type: precision_at_5
1099
+ value: 9.316
1100
+ - type: recall_at_1
1101
+ value: 21.023
1102
+ - type: recall_at_10
1103
+ value: 48.015
1104
+ - type: recall_at_100
1105
+ value: 68.978
1106
+ - type: recall_at_1000
1107
+ value: 88.198
1108
+ - type: recall_at_3
1109
+ value: 35.397
1110
+ - type: recall_at_5
1111
+ value: 40.701
1112
+ - task:
1113
+ type: Retrieval
1114
+ dataset:
1115
+ type: climate-fever
1116
+ name: MTEB ClimateFEVER
1117
+ config: default
1118
+ split: test
1119
+ revision: None
1120
+ metrics:
1121
+ - type: map_at_1
1122
+ value: 11.198
1123
+ - type: map_at_10
1124
+ value: 19.336000000000002
1125
+ - type: map_at_100
1126
+ value: 21.382
1127
+ - type: map_at_1000
1128
+ value: 21.581
1129
+ - type: map_at_3
1130
+ value: 15.992
1131
+ - type: map_at_5
1132
+ value: 17.613
1133
+ - type: mrr_at_1
1134
+ value: 25.080999999999996
1135
+ - type: mrr_at_10
1136
+ value: 36.032
1137
+ - type: mrr_at_100
1138
+ value: 37.1
1139
+ - type: mrr_at_1000
1140
+ value: 37.145
1141
+ - type: mrr_at_3
1142
+ value: 32.595
1143
+ - type: mrr_at_5
1144
+ value: 34.553
1145
+ - type: ndcg_at_1
1146
+ value: 25.080999999999996
1147
+ - type: ndcg_at_10
1148
+ value: 27.290999999999997
1149
+ - type: ndcg_at_100
1150
+ value: 35.31
1151
+ - type: ndcg_at_1000
1152
+ value: 38.885
1153
+ - type: ndcg_at_3
1154
+ value: 21.895999999999997
1155
+ - type: ndcg_at_5
1156
+ value: 23.669999999999998
1157
+ - type: precision_at_1
1158
+ value: 25.080999999999996
1159
+ - type: precision_at_10
1160
+ value: 8.645
1161
+ - type: precision_at_100
1162
+ value: 1.7209999999999999
1163
+ - type: precision_at_1000
1164
+ value: 0.23900000000000002
1165
+ - type: precision_at_3
1166
+ value: 16.287
1167
+ - type: precision_at_5
1168
+ value: 12.625
1169
+ - type: recall_at_1
1170
+ value: 11.198
1171
+ - type: recall_at_10
1172
+ value: 33.355000000000004
1173
+ - type: recall_at_100
1174
+ value: 60.912
1175
+ - type: recall_at_1000
1176
+ value: 80.89
1177
+ - type: recall_at_3
1178
+ value: 20.055
1179
+ - type: recall_at_5
1180
+ value: 25.14
1181
+ - task:
1182
+ type: Retrieval
1183
+ dataset:
1184
+ type: dbpedia-entity
1185
+ name: MTEB DBPedia
1186
+ config: default
1187
+ split: test
1188
+ revision: None
1189
+ metrics:
1190
+ - type: map_at_1
1191
+ value: 9.228
1192
+ - type: map_at_10
1193
+ value: 20.018
1194
+ - type: map_at_100
1195
+ value: 28.388999999999996
1196
+ - type: map_at_1000
1197
+ value: 30.073
1198
+ - type: map_at_3
1199
+ value: 14.366999999999999
1200
+ - type: map_at_5
1201
+ value: 16.705000000000002
1202
+ - type: mrr_at_1
1203
+ value: 69.0
1204
+ - type: mrr_at_10
1205
+ value: 77.058
1206
+ - type: mrr_at_100
1207
+ value: 77.374
1208
+ - type: mrr_at_1000
1209
+ value: 77.384
1210
+ - type: mrr_at_3
1211
+ value: 75.708
1212
+ - type: mrr_at_5
1213
+ value: 76.608
1214
+ - type: ndcg_at_1
1215
+ value: 57.49999999999999
1216
+ - type: ndcg_at_10
1217
+ value: 41.792
1218
+ - type: ndcg_at_100
1219
+ value: 47.374
1220
+ - type: ndcg_at_1000
1221
+ value: 55.13
1222
+ - type: ndcg_at_3
1223
+ value: 46.353
1224
+ - type: ndcg_at_5
1225
+ value: 43.702000000000005
1226
+ - type: precision_at_1
1227
+ value: 69.0
1228
+ - type: precision_at_10
1229
+ value: 32.85
1230
+ - type: precision_at_100
1231
+ value: 10.708
1232
+ - type: precision_at_1000
1233
+ value: 2.024
1234
+ - type: precision_at_3
1235
+ value: 49.5
1236
+ - type: precision_at_5
1237
+ value: 42.05
1238
+ - type: recall_at_1
1239
+ value: 9.228
1240
+ - type: recall_at_10
1241
+ value: 25.635
1242
+ - type: recall_at_100
1243
+ value: 54.894
1244
+ - type: recall_at_1000
1245
+ value: 79.38
1246
+ - type: recall_at_3
1247
+ value: 15.68
1248
+ - type: recall_at_5
1249
+ value: 19.142
1250
+ - task:
1251
+ type: Classification
1252
+ dataset:
1253
+ type: mteb/emotion
1254
+ name: MTEB EmotionClassification
1255
+ config: default
1256
+ split: test
1257
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1258
+ metrics:
1259
+ - type: accuracy
1260
+ value: 52.035
1261
+ - type: f1
1262
+ value: 46.85325505614071
1263
+ - task:
1264
+ type: Retrieval
1265
+ dataset:
1266
+ type: fever
1267
+ name: MTEB FEVER
1268
+ config: default
1269
+ split: test
1270
+ revision: None
1271
+ metrics:
1272
+ - type: map_at_1
1273
+ value: 70.132
1274
+ - type: map_at_10
1275
+ value: 79.527
1276
+ - type: map_at_100
1277
+ value: 79.81200000000001
1278
+ - type: map_at_1000
1279
+ value: 79.828
1280
+ - type: map_at_3
1281
+ value: 78.191
1282
+ - type: map_at_5
1283
+ value: 79.092
1284
+ - type: mrr_at_1
1285
+ value: 75.563
1286
+ - type: mrr_at_10
1287
+ value: 83.80199999999999
1288
+ - type: mrr_at_100
1289
+ value: 83.93
1290
+ - type: mrr_at_1000
1291
+ value: 83.933
1292
+ - type: mrr_at_3
1293
+ value: 82.818
1294
+ - type: mrr_at_5
1295
+ value: 83.505
1296
+ - type: ndcg_at_1
1297
+ value: 75.563
1298
+ - type: ndcg_at_10
1299
+ value: 83.692
1300
+ - type: ndcg_at_100
1301
+ value: 84.706
1302
+ - type: ndcg_at_1000
1303
+ value: 85.001
1304
+ - type: ndcg_at_3
1305
+ value: 81.51
1306
+ - type: ndcg_at_5
1307
+ value: 82.832
1308
+ - type: precision_at_1
1309
+ value: 75.563
1310
+ - type: precision_at_10
1311
+ value: 10.245
1312
+ - type: precision_at_100
1313
+ value: 1.0959999999999999
1314
+ - type: precision_at_1000
1315
+ value: 0.11399999999999999
1316
+ - type: precision_at_3
1317
+ value: 31.518
1318
+ - type: precision_at_5
1319
+ value: 19.772000000000002
1320
+ - type: recall_at_1
1321
+ value: 70.132
1322
+ - type: recall_at_10
1323
+ value: 92.204
1324
+ - type: recall_at_100
1325
+ value: 96.261
1326
+ - type: recall_at_1000
1327
+ value: 98.17399999999999
1328
+ - type: recall_at_3
1329
+ value: 86.288
1330
+ - type: recall_at_5
1331
+ value: 89.63799999999999
1332
+ - task:
1333
+ type: Retrieval
1334
+ dataset:
1335
+ type: fiqa
1336
+ name: MTEB FiQA2018
1337
+ config: default
1338
+ split: test
1339
+ revision: None
1340
+ metrics:
1341
+ - type: map_at_1
1342
+ value: 22.269
1343
+ - type: map_at_10
1344
+ value: 36.042
1345
+ - type: map_at_100
1346
+ value: 37.988
1347
+ - type: map_at_1000
1348
+ value: 38.162
1349
+ - type: map_at_3
1350
+ value: 31.691000000000003
1351
+ - type: map_at_5
1352
+ value: 33.988
1353
+ - type: mrr_at_1
1354
+ value: 44.907000000000004
1355
+ - type: mrr_at_10
1356
+ value: 53.348
1357
+ - type: mrr_at_100
1358
+ value: 54.033
1359
+ - type: mrr_at_1000
1360
+ value: 54.064
1361
+ - type: mrr_at_3
1362
+ value: 50.977
1363
+ - type: mrr_at_5
1364
+ value: 52.112
1365
+ - type: ndcg_at_1
1366
+ value: 44.907000000000004
1367
+ - type: ndcg_at_10
1368
+ value: 44.302
1369
+ - type: ndcg_at_100
1370
+ value: 51.054
1371
+ - type: ndcg_at_1000
1372
+ value: 53.822
1373
+ - type: ndcg_at_3
1374
+ value: 40.615
1375
+ - type: ndcg_at_5
1376
+ value: 41.455999999999996
1377
+ - type: precision_at_1
1378
+ value: 44.907000000000004
1379
+ - type: precision_at_10
1380
+ value: 12.176
1381
+ - type: precision_at_100
1382
+ value: 1.931
1383
+ - type: precision_at_1000
1384
+ value: 0.243
1385
+ - type: precision_at_3
1386
+ value: 27.16
1387
+ - type: precision_at_5
1388
+ value: 19.567999999999998
1389
+ - type: recall_at_1
1390
+ value: 22.269
1391
+ - type: recall_at_10
1392
+ value: 51.188
1393
+ - type: recall_at_100
1394
+ value: 75.924
1395
+ - type: recall_at_1000
1396
+ value: 92.525
1397
+ - type: recall_at_3
1398
+ value: 36.643
1399
+ - type: recall_at_5
1400
+ value: 42.27
1401
+ - task:
1402
+ type: Retrieval
1403
+ dataset:
1404
+ type: hotpotqa
1405
+ name: MTEB HotpotQA
1406
+ config: default
1407
+ split: test
1408
+ revision: None
1409
+ metrics:
1410
+ - type: map_at_1
1411
+ value: 40.412
1412
+ - type: map_at_10
1413
+ value: 66.376
1414
+ - type: map_at_100
1415
+ value: 67.217
1416
+ - type: map_at_1000
1417
+ value: 67.271
1418
+ - type: map_at_3
1419
+ value: 62.741
1420
+ - type: map_at_5
1421
+ value: 65.069
1422
+ - type: mrr_at_1
1423
+ value: 80.824
1424
+ - type: mrr_at_10
1425
+ value: 86.53
1426
+ - type: mrr_at_100
1427
+ value: 86.67399999999999
1428
+ - type: mrr_at_1000
1429
+ value: 86.678
1430
+ - type: mrr_at_3
1431
+ value: 85.676
1432
+ - type: mrr_at_5
1433
+ value: 86.256
1434
+ - type: ndcg_at_1
1435
+ value: 80.824
1436
+ - type: ndcg_at_10
1437
+ value: 74.332
1438
+ - type: ndcg_at_100
1439
+ value: 77.154
1440
+ - type: ndcg_at_1000
1441
+ value: 78.12400000000001
1442
+ - type: ndcg_at_3
1443
+ value: 69.353
1444
+ - type: ndcg_at_5
1445
+ value: 72.234
1446
+ - type: precision_at_1
1447
+ value: 80.824
1448
+ - type: precision_at_10
1449
+ value: 15.652
1450
+ - type: precision_at_100
1451
+ value: 1.7840000000000003
1452
+ - type: precision_at_1000
1453
+ value: 0.191
1454
+ - type: precision_at_3
1455
+ value: 44.911
1456
+ - type: precision_at_5
1457
+ value: 29.221000000000004
1458
+ - type: recall_at_1
1459
+ value: 40.412
1460
+ - type: recall_at_10
1461
+ value: 78.25800000000001
1462
+ - type: recall_at_100
1463
+ value: 89.196
1464
+ - type: recall_at_1000
1465
+ value: 95.544
1466
+ - type: recall_at_3
1467
+ value: 67.367
1468
+ - type: recall_at_5
1469
+ value: 73.05199999999999
1470
+ - task:
1471
+ type: Classification
1472
+ dataset:
1473
+ type: mteb/imdb
1474
+ name: MTEB ImdbClassification
1475
+ config: default
1476
+ split: test
1477
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1478
+ metrics:
1479
+ - type: accuracy
1480
+ value: 92.78880000000001
1481
+ - type: ap
1482
+ value: 89.39251741048801
1483
+ - type: f1
1484
+ value: 92.78019950076781
1485
+ - task:
1486
+ type: Retrieval
1487
+ dataset:
1488
+ type: msmarco
1489
+ name: MTEB MSMARCO
1490
+ config: default
1491
+ split: dev
1492
+ revision: None
1493
+ metrics:
1494
+ - type: map_at_1
1495
+ value: 22.888
1496
+ - type: map_at_10
1497
+ value: 35.146
1498
+ - type: map_at_100
1499
+ value: 36.325
1500
+ - type: map_at_1000
1501
+ value: 36.372
1502
+ - type: map_at_3
1503
+ value: 31.3
1504
+ - type: map_at_5
1505
+ value: 33.533
1506
+ - type: mrr_at_1
1507
+ value: 23.480999999999998
1508
+ - type: mrr_at_10
1509
+ value: 35.777
1510
+ - type: mrr_at_100
1511
+ value: 36.887
1512
+ - type: mrr_at_1000
1513
+ value: 36.928
1514
+ - type: mrr_at_3
1515
+ value: 31.989
1516
+ - type: mrr_at_5
1517
+ value: 34.202
1518
+ - type: ndcg_at_1
1519
+ value: 23.496
1520
+ - type: ndcg_at_10
1521
+ value: 42.028999999999996
1522
+ - type: ndcg_at_100
1523
+ value: 47.629
1524
+ - type: ndcg_at_1000
1525
+ value: 48.785000000000004
1526
+ - type: ndcg_at_3
1527
+ value: 34.227000000000004
1528
+ - type: ndcg_at_5
1529
+ value: 38.207
1530
+ - type: precision_at_1
1531
+ value: 23.496
1532
+ - type: precision_at_10
1533
+ value: 6.596
1534
+ - type: precision_at_100
1535
+ value: 0.9400000000000001
1536
+ - type: precision_at_1000
1537
+ value: 0.104
1538
+ - type: precision_at_3
1539
+ value: 14.513000000000002
1540
+ - type: precision_at_5
1541
+ value: 10.711
1542
+ - type: recall_at_1
1543
+ value: 22.888
1544
+ - type: recall_at_10
1545
+ value: 63.129999999999995
1546
+ - type: recall_at_100
1547
+ value: 88.90299999999999
1548
+ - type: recall_at_1000
1549
+ value: 97.69
1550
+ - type: recall_at_3
1551
+ value: 42.014
1552
+ - type: recall_at_5
1553
+ value: 51.554
1554
+ - task:
1555
+ type: Classification
1556
+ dataset:
1557
+ type: mteb/mtop_domain
1558
+ name: MTEB MTOPDomainClassification (en)
1559
+ config: en
1560
+ split: test
1561
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1562
+ metrics:
1563
+ - type: accuracy
1564
+ value: 94.59188326493388
1565
+ - type: f1
1566
+ value: 94.36568950290486
1567
+ - task:
1568
+ type: Classification
1569
+ dataset:
1570
+ type: mteb/mtop_intent
1571
+ name: MTEB MTOPIntentClassification (en)
1572
+ config: en
1573
+ split: test
1574
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1575
+ metrics:
1576
+ - type: accuracy
1577
+ value: 79.25672594619242
1578
+ - type: f1
1579
+ value: 59.52405059722216
1580
+ - task:
1581
+ type: Classification
1582
+ dataset:
1583
+ type: mteb/amazon_massive_intent
1584
+ name: MTEB MassiveIntentClassification (en)
1585
+ config: en
1586
+ split: test
1587
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1588
+ metrics:
1589
+ - type: accuracy
1590
+ value: 77.4142568930733
1591
+ - type: f1
1592
+ value: 75.23044196543388
1593
+ - task:
1594
+ type: Classification
1595
+ dataset:
1596
+ type: mteb/amazon_massive_scenario
1597
+ name: MTEB MassiveScenarioClassification (en)
1598
+ config: en
1599
+ split: test
1600
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1601
+ metrics:
1602
+ - type: accuracy
1603
+ value: 80.44720914593141
1604
+ - type: f1
1605
+ value: 80.41049641537015
1606
+ - task:
1607
+ type: Clustering
1608
+ dataset:
1609
+ type: mteb/medrxiv-clustering-p2p
1610
+ name: MTEB MedrxivClusteringP2P
1611
+ config: default
1612
+ split: test
1613
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1614
+ metrics:
1615
+ - type: v_measure
1616
+ value: 31.960921474993775
1617
+ - task:
1618
+ type: Clustering
1619
+ dataset:
1620
+ type: mteb/medrxiv-clustering-s2s
1621
+ name: MTEB MedrxivClusteringS2S
1622
+ config: default
1623
+ split: test
1624
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1625
+ metrics:
1626
+ - type: v_measure
1627
+ value: 30.88042240204361
1628
+ - task:
1629
+ type: Reranking
1630
+ dataset:
1631
+ type: mteb/mind_small
1632
+ name: MTEB MindSmallReranking
1633
+ config: default
1634
+ split: test
1635
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1636
+ metrics:
1637
+ - type: map
1638
+ value: 32.27071371606404
1639
+ - type: mrr
1640
+ value: 33.541450459533856
1641
+ - task:
1642
+ type: Retrieval
1643
+ dataset:
1644
+ type: nfcorpus
1645
+ name: MTEB NFCorpus
1646
+ config: default
1647
+ split: test
1648
+ revision: None
1649
+ metrics:
1650
+ - type: map_at_1
1651
+ value: 6.551
1652
+ - type: map_at_10
1653
+ value: 14.359
1654
+ - type: map_at_100
1655
+ value: 18.157
1656
+ - type: map_at_1000
1657
+ value: 19.659
1658
+ - type: map_at_3
1659
+ value: 10.613999999999999
1660
+ - type: map_at_5
1661
+ value: 12.296
1662
+ - type: mrr_at_1
1663
+ value: 47.368
1664
+ - type: mrr_at_10
1665
+ value: 56.689
1666
+ - type: mrr_at_100
1667
+ value: 57.24399999999999
1668
+ - type: mrr_at_1000
1669
+ value: 57.284
1670
+ - type: mrr_at_3
1671
+ value: 54.489
1672
+ - type: mrr_at_5
1673
+ value: 55.928999999999995
1674
+ - type: ndcg_at_1
1675
+ value: 45.511
1676
+ - type: ndcg_at_10
1677
+ value: 36.911
1678
+ - type: ndcg_at_100
1679
+ value: 34.241
1680
+ - type: ndcg_at_1000
1681
+ value: 43.064
1682
+ - type: ndcg_at_3
1683
+ value: 42.348
1684
+ - type: ndcg_at_5
1685
+ value: 39.884
1686
+ - type: precision_at_1
1687
+ value: 46.749
1688
+ - type: precision_at_10
1689
+ value: 27.028000000000002
1690
+ - type: precision_at_100
1691
+ value: 8.52
1692
+ - type: precision_at_1000
1693
+ value: 2.154
1694
+ - type: precision_at_3
1695
+ value: 39.525
1696
+ - type: precision_at_5
1697
+ value: 34.18
1698
+ - type: recall_at_1
1699
+ value: 6.551
1700
+ - type: recall_at_10
1701
+ value: 18.602
1702
+ - type: recall_at_100
1703
+ value: 34.882999999999996
1704
+ - type: recall_at_1000
1705
+ value: 66.049
1706
+ - type: recall_at_3
1707
+ value: 11.872
1708
+ - type: recall_at_5
1709
+ value: 14.74
1710
+ - task:
1711
+ type: Retrieval
1712
+ dataset:
1713
+ type: nq
1714
+ name: MTEB NQ
1715
+ config: default
1716
+ split: test
1717
+ revision: None
1718
+ metrics:
1719
+ - type: map_at_1
1720
+ value: 27.828999999999997
1721
+ - type: map_at_10
1722
+ value: 43.606
1723
+ - type: map_at_100
1724
+ value: 44.656
1725
+ - type: map_at_1000
1726
+ value: 44.690000000000005
1727
+ - type: map_at_3
1728
+ value: 39.015
1729
+ - type: map_at_5
1730
+ value: 41.625
1731
+ - type: mrr_at_1
1732
+ value: 31.518
1733
+ - type: mrr_at_10
1734
+ value: 46.047
1735
+ - type: mrr_at_100
1736
+ value: 46.846
1737
+ - type: mrr_at_1000
1738
+ value: 46.867999999999995
1739
+ - type: mrr_at_3
1740
+ value: 42.154
1741
+ - type: mrr_at_5
1742
+ value: 44.468999999999994
1743
+ - type: ndcg_at_1
1744
+ value: 31.518
1745
+ - type: ndcg_at_10
1746
+ value: 51.768
1747
+ - type: ndcg_at_100
1748
+ value: 56.184999999999995
1749
+ - type: ndcg_at_1000
1750
+ value: 56.92
1751
+ - type: ndcg_at_3
1752
+ value: 43.059999999999995
1753
+ - type: ndcg_at_5
1754
+ value: 47.481
1755
+ - type: precision_at_1
1756
+ value: 31.518
1757
+ - type: precision_at_10
1758
+ value: 8.824
1759
+ - type: precision_at_100
1760
+ value: 1.131
1761
+ - type: precision_at_1000
1762
+ value: 0.12
1763
+ - type: precision_at_3
1764
+ value: 19.969
1765
+ - type: precision_at_5
1766
+ value: 14.502
1767
+ - type: recall_at_1
1768
+ value: 27.828999999999997
1769
+ - type: recall_at_10
1770
+ value: 74.244
1771
+ - type: recall_at_100
1772
+ value: 93.325
1773
+ - type: recall_at_1000
1774
+ value: 98.71799999999999
1775
+ - type: recall_at_3
1776
+ value: 51.601
1777
+ - type: recall_at_5
1778
+ value: 61.841
1779
+ - task:
1780
+ type: Retrieval
1781
+ dataset:
1782
+ type: quora
1783
+ name: MTEB QuoraRetrieval
1784
+ config: default
1785
+ split: test
1786
+ revision: None
1787
+ metrics:
1788
+ - type: map_at_1
1789
+ value: 71.54
1790
+ - type: map_at_10
1791
+ value: 85.509
1792
+ - type: map_at_100
1793
+ value: 86.137
1794
+ - type: map_at_1000
1795
+ value: 86.151
1796
+ - type: map_at_3
1797
+ value: 82.624
1798
+ - type: map_at_5
1799
+ value: 84.425
1800
+ - type: mrr_at_1
1801
+ value: 82.45
1802
+ - type: mrr_at_10
1803
+ value: 88.344
1804
+ - type: mrr_at_100
1805
+ value: 88.437
1806
+ - type: mrr_at_1000
1807
+ value: 88.437
1808
+ - type: mrr_at_3
1809
+ value: 87.417
1810
+ - type: mrr_at_5
1811
+ value: 88.066
1812
+ - type: ndcg_at_1
1813
+ value: 82.45
1814
+ - type: ndcg_at_10
1815
+ value: 89.092
1816
+ - type: ndcg_at_100
1817
+ value: 90.252
1818
+ - type: ndcg_at_1000
1819
+ value: 90.321
1820
+ - type: ndcg_at_3
1821
+ value: 86.404
1822
+ - type: ndcg_at_5
1823
+ value: 87.883
1824
+ - type: precision_at_1
1825
+ value: 82.45
1826
+ - type: precision_at_10
1827
+ value: 13.496
1828
+ - type: precision_at_100
1829
+ value: 1.536
1830
+ - type: precision_at_1000
1831
+ value: 0.157
1832
+ - type: precision_at_3
1833
+ value: 37.833
1834
+ - type: precision_at_5
1835
+ value: 24.79
1836
+ - type: recall_at_1
1837
+ value: 71.54
1838
+ - type: recall_at_10
1839
+ value: 95.846
1840
+ - type: recall_at_100
1841
+ value: 99.715
1842
+ - type: recall_at_1000
1843
+ value: 99.979
1844
+ - type: recall_at_3
1845
+ value: 88.01299999999999
1846
+ - type: recall_at_5
1847
+ value: 92.32000000000001
1848
+ - task:
1849
+ type: Clustering
1850
+ dataset:
1851
+ type: mteb/reddit-clustering
1852
+ name: MTEB RedditClustering
1853
+ config: default
1854
+ split: test
1855
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1856
+ metrics:
1857
+ - type: v_measure
1858
+ value: 57.60557586253866
1859
+ - task:
1860
+ type: Clustering
1861
+ dataset:
1862
+ type: mteb/reddit-clustering-p2p
1863
+ name: MTEB RedditClusteringP2P
1864
+ config: default
1865
+ split: test
1866
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1867
+ metrics:
1868
+ - type: v_measure
1869
+ value: 64.0287172242051
1870
+ - task:
1871
+ type: Retrieval
1872
+ dataset:
1873
+ type: scidocs
1874
+ name: MTEB SCIDOCS
1875
+ config: default
1876
+ split: test
1877
+ revision: None
1878
+ metrics:
1879
+ - type: map_at_1
1880
+ value: 3.9849999999999994
1881
+ - type: map_at_10
1882
+ value: 11.397
1883
+ - type: map_at_100
1884
+ value: 13.985
1885
+ - type: map_at_1000
1886
+ value: 14.391000000000002
1887
+ - type: map_at_3
1888
+ value: 7.66
1889
+ - type: map_at_5
1890
+ value: 9.46
1891
+ - type: mrr_at_1
1892
+ value: 19.8
1893
+ - type: mrr_at_10
1894
+ value: 31.958
1895
+ - type: mrr_at_100
1896
+ value: 33.373999999999995
1897
+ - type: mrr_at_1000
1898
+ value: 33.411
1899
+ - type: mrr_at_3
1900
+ value: 28.316999999999997
1901
+ - type: mrr_at_5
1902
+ value: 30.297
1903
+ - type: ndcg_at_1
1904
+ value: 19.8
1905
+ - type: ndcg_at_10
1906
+ value: 19.580000000000002
1907
+ - type: ndcg_at_100
1908
+ value: 29.555999999999997
1909
+ - type: ndcg_at_1000
1910
+ value: 35.882
1911
+ - type: ndcg_at_3
1912
+ value: 17.544
1913
+ - type: ndcg_at_5
1914
+ value: 15.815999999999999
1915
+ - type: precision_at_1
1916
+ value: 19.8
1917
+ - type: precision_at_10
1918
+ value: 10.61
1919
+ - type: precision_at_100
1920
+ value: 2.501
1921
+ - type: precision_at_1000
1922
+ value: 0.40099999999999997
1923
+ - type: precision_at_3
1924
+ value: 16.900000000000002
1925
+ - type: precision_at_5
1926
+ value: 14.44
1927
+ - type: recall_at_1
1928
+ value: 3.9849999999999994
1929
+ - type: recall_at_10
1930
+ value: 21.497
1931
+ - type: recall_at_100
1932
+ value: 50.727999999999994
1933
+ - type: recall_at_1000
1934
+ value: 81.27499999999999
1935
+ - type: recall_at_3
1936
+ value: 10.263
1937
+ - type: recall_at_5
1938
+ value: 14.643
1939
+ - task:
1940
+ type: STS
1941
+ dataset:
1942
+ type: mteb/sickr-sts
1943
+ name: MTEB SICK-R
1944
+ config: default
1945
+ split: test
1946
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1947
+ metrics:
1948
+ - type: cos_sim_pearson
1949
+ value: 85.0087509585503
1950
+ - type: cos_sim_spearman
1951
+ value: 81.74697270664319
1952
+ - type: euclidean_pearson
1953
+ value: 81.80424382731947
1954
+ - type: euclidean_spearman
1955
+ value: 81.29794251968431
1956
+ - type: manhattan_pearson
1957
+ value: 81.81524666226125
1958
+ - type: manhattan_spearman
1959
+ value: 81.29475370198963
1960
+ - task:
1961
+ type: STS
1962
+ dataset:
1963
+ type: mteb/sts12-sts
1964
+ name: MTEB STS12
1965
+ config: default
1966
+ split: test
1967
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1968
+ metrics:
1969
+ - type: cos_sim_pearson
1970
+ value: 86.44442736429552
1971
+ - type: cos_sim_spearman
1972
+ value: 78.51011398910948
1973
+ - type: euclidean_pearson
1974
+ value: 83.36181801196723
1975
+ - type: euclidean_spearman
1976
+ value: 79.47272621331535
1977
+ - type: manhattan_pearson
1978
+ value: 83.3660113483837
1979
+ - type: manhattan_spearman
1980
+ value: 79.47695922566032
1981
+ - task:
1982
+ type: STS
1983
+ dataset:
1984
+ type: mteb/sts13-sts
1985
+ name: MTEB STS13
1986
+ config: default
1987
+ split: test
1988
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1989
+ metrics:
1990
+ - type: cos_sim_pearson
1991
+ value: 85.82923943323635
1992
+ - type: cos_sim_spearman
1993
+ value: 86.62037823380983
1994
+ - type: euclidean_pearson
1995
+ value: 83.56369548403958
1996
+ - type: euclidean_spearman
1997
+ value: 84.2176755481191
1998
+ - type: manhattan_pearson
1999
+ value: 83.55460702084464
2000
+ - type: manhattan_spearman
2001
+ value: 84.18617930921467
2002
+ - task:
2003
+ type: STS
2004
+ dataset:
2005
+ type: mteb/sts14-sts
2006
+ name: MTEB STS14
2007
+ config: default
2008
+ split: test
2009
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2010
+ metrics:
2011
+ - type: cos_sim_pearson
2012
+ value: 84.09071068110103
2013
+ - type: cos_sim_spearman
2014
+ value: 83.05697553913335
2015
+ - type: euclidean_pearson
2016
+ value: 81.1377457216497
2017
+ - type: euclidean_spearman
2018
+ value: 81.74714169016676
2019
+ - type: manhattan_pearson
2020
+ value: 81.0893424142723
2021
+ - type: manhattan_spearman
2022
+ value: 81.7058918219677
2023
+ - task:
2024
+ type: STS
2025
+ dataset:
2026
+ type: mteb/sts15-sts
2027
+ name: MTEB STS15
2028
+ config: default
2029
+ split: test
2030
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2031
+ metrics:
2032
+ - type: cos_sim_pearson
2033
+ value: 87.61132157220429
2034
+ - type: cos_sim_spearman
2035
+ value: 88.38581627185445
2036
+ - type: euclidean_pearson
2037
+ value: 86.14904510913374
2038
+ - type: euclidean_spearman
2039
+ value: 86.5452758925542
2040
+ - type: manhattan_pearson
2041
+ value: 86.1484025377679
2042
+ - type: manhattan_spearman
2043
+ value: 86.55483841566252
2044
+ - task:
2045
+ type: STS
2046
+ dataset:
2047
+ type: mteb/sts16-sts
2048
+ name: MTEB STS16
2049
+ config: default
2050
+ split: test
2051
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2052
+ metrics:
2053
+ - type: cos_sim_pearson
2054
+ value: 85.46195145161064
2055
+ - type: cos_sim_spearman
2056
+ value: 86.82409112251158
2057
+ - type: euclidean_pearson
2058
+ value: 84.75479672288957
2059
+ - type: euclidean_spearman
2060
+ value: 85.41144307151548
2061
+ - type: manhattan_pearson
2062
+ value: 84.70914329694165
2063
+ - type: manhattan_spearman
2064
+ value: 85.38477943384089
2065
+ - task:
2066
+ type: STS
2067
+ dataset:
2068
+ type: mteb/sts17-crosslingual-sts
2069
+ name: MTEB STS17 (en-en)
2070
+ config: en-en
2071
+ split: test
2072
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2073
+ metrics:
2074
+ - type: cos_sim_pearson
2075
+ value: 88.06351289930238
2076
+ - type: cos_sim_spearman
2077
+ value: 87.90311138579116
2078
+ - type: euclidean_pearson
2079
+ value: 86.17651467063077
2080
+ - type: euclidean_spearman
2081
+ value: 84.89447802019073
2082
+ - type: manhattan_pearson
2083
+ value: 86.3267677479595
2084
+ - type: manhattan_spearman
2085
+ value: 85.00472295103874
2086
+ - task:
2087
+ type: STS
2088
+ dataset:
2089
+ type: mteb/sts22-crosslingual-sts
2090
+ name: MTEB STS22 (en)
2091
+ config: en
2092
+ split: test
2093
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2094
+ metrics:
2095
+ - type: cos_sim_pearson
2096
+ value: 67.78311975978767
2097
+ - type: cos_sim_spearman
2098
+ value: 66.76465685245887
2099
+ - type: euclidean_pearson
2100
+ value: 67.21687806595443
2101
+ - type: euclidean_spearman
2102
+ value: 65.05776733534435
2103
+ - type: manhattan_pearson
2104
+ value: 67.14008143635883
2105
+ - type: manhattan_spearman
2106
+ value: 65.25247076149701
2107
+ - task:
2108
+ type: STS
2109
+ dataset:
2110
+ type: mteb/stsbenchmark-sts
2111
+ name: MTEB STSBenchmark
2112
+ config: default
2113
+ split: test
2114
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2115
+ metrics:
2116
+ - type: cos_sim_pearson
2117
+ value: 86.7403488889418
2118
+ - type: cos_sim_spearman
2119
+ value: 87.76870289783061
2120
+ - type: euclidean_pearson
2121
+ value: 84.83171077794671
2122
+ - type: euclidean_spearman
2123
+ value: 85.50579695091902
2124
+ - type: manhattan_pearson
2125
+ value: 84.83074260180555
2126
+ - type: manhattan_spearman
2127
+ value: 85.47589026938667
2128
+ - task:
2129
+ type: Reranking
2130
+ dataset:
2131
+ type: mteb/scidocs-reranking
2132
+ name: MTEB SciDocsRR
2133
+ config: default
2134
+ split: test
2135
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2136
+ metrics:
2137
+ - type: map
2138
+ value: 87.56234016237356
2139
+ - type: mrr
2140
+ value: 96.26124238869338
2141
+ - task:
2142
+ type: Retrieval
2143
+ dataset:
2144
+ type: scifact
2145
+ name: MTEB SciFact
2146
+ config: default
2147
+ split: test
2148
+ revision: None
2149
+ metrics:
2150
+ - type: map_at_1
2151
+ value: 59.660999999999994
2152
+ - type: map_at_10
2153
+ value: 69.105
2154
+ - type: map_at_100
2155
+ value: 69.78
2156
+ - type: map_at_1000
2157
+ value: 69.80199999999999
2158
+ - type: map_at_3
2159
+ value: 65.991
2160
+ - type: map_at_5
2161
+ value: 68.02
2162
+ - type: mrr_at_1
2163
+ value: 62.666999999999994
2164
+ - type: mrr_at_10
2165
+ value: 70.259
2166
+ - type: mrr_at_100
2167
+ value: 70.776
2168
+ - type: mrr_at_1000
2169
+ value: 70.796
2170
+ - type: mrr_at_3
2171
+ value: 67.889
2172
+ - type: mrr_at_5
2173
+ value: 69.52199999999999
2174
+ - type: ndcg_at_1
2175
+ value: 62.666999999999994
2176
+ - type: ndcg_at_10
2177
+ value: 73.425
2178
+ - type: ndcg_at_100
2179
+ value: 75.955
2180
+ - type: ndcg_at_1000
2181
+ value: 76.459
2182
+ - type: ndcg_at_3
2183
+ value: 68.345
2184
+ - type: ndcg_at_5
2185
+ value: 71.319
2186
+ - type: precision_at_1
2187
+ value: 62.666999999999994
2188
+ - type: precision_at_10
2189
+ value: 9.667
2190
+ - type: precision_at_100
2191
+ value: 1.09
2192
+ - type: precision_at_1000
2193
+ value: 0.11299999999999999
2194
+ - type: precision_at_3
2195
+ value: 26.333000000000002
2196
+ - type: precision_at_5
2197
+ value: 17.732999999999997
2198
+ - type: recall_at_1
2199
+ value: 59.660999999999994
2200
+ - type: recall_at_10
2201
+ value: 85.422
2202
+ - type: recall_at_100
2203
+ value: 96.167
2204
+ - type: recall_at_1000
2205
+ value: 100.0
2206
+ - type: recall_at_3
2207
+ value: 72.044
2208
+ - type: recall_at_5
2209
+ value: 79.428
2210
+ - task:
2211
+ type: PairClassification
2212
+ dataset:
2213
+ type: mteb/sprintduplicatequestions-pairclassification
2214
+ name: MTEB SprintDuplicateQuestions
2215
+ config: default
2216
+ split: test
2217
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2218
+ metrics:
2219
+ - type: cos_sim_accuracy
2220
+ value: 99.86435643564356
2221
+ - type: cos_sim_ap
2222
+ value: 96.83057412333741
2223
+ - type: cos_sim_f1
2224
+ value: 93.04215337734891
2225
+ - type: cos_sim_precision
2226
+ value: 94.53044375644994
2227
+ - type: cos_sim_recall
2228
+ value: 91.60000000000001
2229
+ - type: dot_accuracy
2230
+ value: 99.7910891089109
2231
+ - type: dot_ap
2232
+ value: 94.10681982106397
2233
+ - type: dot_f1
2234
+ value: 89.34881373043918
2235
+ - type: dot_precision
2236
+ value: 90.21406727828746
2237
+ - type: dot_recall
2238
+ value: 88.5
2239
+ - type: euclidean_accuracy
2240
+ value: 99.85544554455446
2241
+ - type: euclidean_ap
2242
+ value: 96.78545104478602
2243
+ - type: euclidean_f1
2244
+ value: 92.65143992055613
2245
+ - type: euclidean_precision
2246
+ value: 92.01183431952663
2247
+ - type: euclidean_recall
2248
+ value: 93.30000000000001
2249
+ - type: manhattan_accuracy
2250
+ value: 99.85841584158416
2251
+ - type: manhattan_ap
2252
+ value: 96.80748903307823
2253
+ - type: manhattan_f1
2254
+ value: 92.78247884519662
2255
+ - type: manhattan_precision
2256
+ value: 92.36868186323092
2257
+ - type: manhattan_recall
2258
+ value: 93.2
2259
+ - type: max_accuracy
2260
+ value: 99.86435643564356
2261
+ - type: max_ap
2262
+ value: 96.83057412333741
2263
+ - type: max_f1
2264
+ value: 93.04215337734891
2265
+ - task:
2266
+ type: Clustering
2267
+ dataset:
2268
+ type: mteb/stackexchange-clustering
2269
+ name: MTEB StackExchangeClustering
2270
+ config: default
2271
+ split: test
2272
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2273
+ metrics:
2274
+ - type: v_measure
2275
+ value: 65.53971025855282
2276
+ - task:
2277
+ type: Clustering
2278
+ dataset:
2279
+ type: mteb/stackexchange-clustering-p2p
2280
+ name: MTEB StackExchangeClusteringP2P
2281
+ config: default
2282
+ split: test
2283
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2284
+ metrics:
2285
+ - type: v_measure
2286
+ value: 33.97791591490788
2287
+ - task:
2288
+ type: Reranking
2289
+ dataset:
2290
+ type: mteb/stackoverflowdupquestions-reranking
2291
+ name: MTEB StackOverflowDupQuestions
2292
+ config: default
2293
+ split: test
2294
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2295
+ metrics:
2296
+ - type: map
2297
+ value: 55.852215301355066
2298
+ - type: mrr
2299
+ value: 56.85527809608691
2300
+ - task:
2301
+ type: Summarization
2302
+ dataset:
2303
+ type: mteb/summeval
2304
+ name: MTEB SummEval
2305
+ config: default
2306
+ split: test
2307
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2308
+ metrics:
2309
+ - type: cos_sim_pearson
2310
+ value: 31.21442519856758
2311
+ - type: cos_sim_spearman
2312
+ value: 30.822536216936825
2313
+ - type: dot_pearson
2314
+ value: 28.661325528121807
2315
+ - type: dot_spearman
2316
+ value: 28.1435226478879
2317
+ - task:
2318
+ type: Retrieval
2319
+ dataset:
2320
+ type: trec-covid
2321
+ name: MTEB TRECCOVID
2322
+ config: default
2323
+ split: test
2324
+ revision: None
2325
+ metrics:
2326
+ - type: map_at_1
2327
+ value: 0.183
2328
+ - type: map_at_10
2329
+ value: 1.526
2330
+ - type: map_at_100
2331
+ value: 7.915
2332
+ - type: map_at_1000
2333
+ value: 19.009
2334
+ - type: map_at_3
2335
+ value: 0.541
2336
+ - type: map_at_5
2337
+ value: 0.8659999999999999
2338
+ - type: mrr_at_1
2339
+ value: 68.0
2340
+ - type: mrr_at_10
2341
+ value: 81.186
2342
+ - type: mrr_at_100
2343
+ value: 81.186
2344
+ - type: mrr_at_1000
2345
+ value: 81.186
2346
+ - type: mrr_at_3
2347
+ value: 80.0
2348
+ - type: mrr_at_5
2349
+ value: 80.9
2350
+ - type: ndcg_at_1
2351
+ value: 64.0
2352
+ - type: ndcg_at_10
2353
+ value: 64.13799999999999
2354
+ - type: ndcg_at_100
2355
+ value: 47.632000000000005
2356
+ - type: ndcg_at_1000
2357
+ value: 43.037
2358
+ - type: ndcg_at_3
2359
+ value: 67.542
2360
+ - type: ndcg_at_5
2361
+ value: 67.496
2362
+ - type: precision_at_1
2363
+ value: 68.0
2364
+ - type: precision_at_10
2365
+ value: 67.80000000000001
2366
+ - type: precision_at_100
2367
+ value: 48.980000000000004
2368
+ - type: precision_at_1000
2369
+ value: 19.036
2370
+ - type: precision_at_3
2371
+ value: 72.0
2372
+ - type: precision_at_5
2373
+ value: 71.2
2374
+ - type: recall_at_1
2375
+ value: 0.183
2376
+ - type: recall_at_10
2377
+ value: 1.799
2378
+ - type: recall_at_100
2379
+ value: 11.652999999999999
2380
+ - type: recall_at_1000
2381
+ value: 40.086
2382
+ - type: recall_at_3
2383
+ value: 0.5930000000000001
2384
+ - type: recall_at_5
2385
+ value: 0.983
2386
+ - task:
2387
+ type: Retrieval
2388
+ dataset:
2389
+ type: webis-touche2020
2390
+ name: MTEB Touche2020
2391
+ config: default
2392
+ split: test
2393
+ revision: None
2394
+ metrics:
2395
+ - type: map_at_1
2396
+ value: 2.29
2397
+ - type: map_at_10
2398
+ value: 9.489
2399
+ - type: map_at_100
2400
+ value: 15.051
2401
+ - type: map_at_1000
2402
+ value: 16.561999999999998
2403
+ - type: map_at_3
2404
+ value: 5.137
2405
+ - type: map_at_5
2406
+ value: 6.7989999999999995
2407
+ - type: mrr_at_1
2408
+ value: 28.571
2409
+ - type: mrr_at_10
2410
+ value: 45.699
2411
+ - type: mrr_at_100
2412
+ value: 46.461000000000006
2413
+ - type: mrr_at_1000
2414
+ value: 46.461000000000006
2415
+ - type: mrr_at_3
2416
+ value: 41.837
2417
+ - type: mrr_at_5
2418
+ value: 43.163000000000004
2419
+ - type: ndcg_at_1
2420
+ value: 23.469
2421
+ - type: ndcg_at_10
2422
+ value: 23.544999999999998
2423
+ - type: ndcg_at_100
2424
+ value: 34.572
2425
+ - type: ndcg_at_1000
2426
+ value: 46.035
2427
+ - type: ndcg_at_3
2428
+ value: 27.200000000000003
2429
+ - type: ndcg_at_5
2430
+ value: 25.266
2431
+ - type: precision_at_1
2432
+ value: 28.571
2433
+ - type: precision_at_10
2434
+ value: 22.041
2435
+ - type: precision_at_100
2436
+ value: 7.3469999999999995
2437
+ - type: precision_at_1000
2438
+ value: 1.484
2439
+ - type: precision_at_3
2440
+ value: 29.932
2441
+ - type: precision_at_5
2442
+ value: 26.531
2443
+ - type: recall_at_1
2444
+ value: 2.29
2445
+ - type: recall_at_10
2446
+ value: 15.895999999999999
2447
+ - type: recall_at_100
2448
+ value: 45.518
2449
+ - type: recall_at_1000
2450
+ value: 80.731
2451
+ - type: recall_at_3
2452
+ value: 6.433
2453
+ - type: recall_at_5
2454
+ value: 9.484
2455
+ - task:
2456
+ type: Classification
2457
+ dataset:
2458
+ type: mteb/toxic_conversations_50k
2459
+ name: MTEB ToxicConversationsClassification
2460
+ config: default
2461
+ split: test
2462
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2463
+ metrics:
2464
+ - type: accuracy
2465
+ value: 71.4178
2466
+ - type: ap
2467
+ value: 14.575240629602373
2468
+ - type: f1
2469
+ value: 55.02449563229096
2470
+ - task:
2471
+ type: Classification
2472
+ dataset:
2473
+ type: mteb/tweet_sentiment_extraction
2474
+ name: MTEB TweetSentimentExtractionClassification
2475
+ config: default
2476
+ split: test
2477
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2478
+ metrics:
2479
+ - type: accuracy
2480
+ value: 60.00282965478212
2481
+ - type: f1
2482
+ value: 60.34413028768773
2483
+ - task:
2484
+ type: Clustering
2485
+ dataset:
2486
+ type: mteb/twentynewsgroups-clustering
2487
+ name: MTEB TwentyNewsgroupsClustering
2488
+ config: default
2489
+ split: test
2490
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2491
+ metrics:
2492
+ - type: v_measure
2493
+ value: 50.409448342549936
2494
+ - task:
2495
+ type: PairClassification
2496
+ dataset:
2497
+ type: mteb/twittersemeval2015-pairclassification
2498
+ name: MTEB TwitterSemEval2015
2499
+ config: default
2500
+ split: test
2501
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2502
+ metrics:
2503
+ - type: cos_sim_accuracy
2504
+ value: 87.62591643321214
2505
+ - type: cos_sim_ap
2506
+ value: 79.28766491329633
2507
+ - type: cos_sim_f1
2508
+ value: 71.98772064466617
2509
+ - type: cos_sim_precision
2510
+ value: 69.8609731876862
2511
+ - type: cos_sim_recall
2512
+ value: 74.24802110817942
2513
+ - type: dot_accuracy
2514
+ value: 84.75293556654945
2515
+ - type: dot_ap
2516
+ value: 69.72705761174353
2517
+ - type: dot_f1
2518
+ value: 65.08692852543464
2519
+ - type: dot_precision
2520
+ value: 63.57232704402516
2521
+ - type: dot_recall
2522
+ value: 66.6754617414248
2523
+ - type: euclidean_accuracy
2524
+ value: 87.44710019669786
2525
+ - type: euclidean_ap
2526
+ value: 79.11021477292638
2527
+ - type: euclidean_f1
2528
+ value: 71.5052389470994
2529
+ - type: euclidean_precision
2530
+ value: 69.32606541129832
2531
+ - type: euclidean_recall
2532
+ value: 73.82585751978891
2533
+ - type: manhattan_accuracy
2534
+ value: 87.42325803182929
2535
+ - type: manhattan_ap
2536
+ value: 79.05094494327616
2537
+ - type: manhattan_f1
2538
+ value: 71.36333985649055
2539
+ - type: manhattan_precision
2540
+ value: 70.58064516129032
2541
+ - type: manhattan_recall
2542
+ value: 72.16358839050132
2543
+ - type: max_accuracy
2544
+ value: 87.62591643321214
2545
+ - type: max_ap
2546
+ value: 79.28766491329633
2547
+ - type: max_f1
2548
+ value: 71.98772064466617
2549
+ - task:
2550
+ type: PairClassification
2551
+ dataset:
2552
+ type: mteb/twitterurlcorpus-pairclassification
2553
+ name: MTEB TwitterURLCorpus
2554
+ config: default
2555
+ split: test
2556
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2557
+ metrics:
2558
+ - type: cos_sim_accuracy
2559
+ value: 88.85202002561415
2560
+ - type: cos_sim_ap
2561
+ value: 85.9835303311168
2562
+ - type: cos_sim_f1
2563
+ value: 78.25741142443962
2564
+ - type: cos_sim_precision
2565
+ value: 73.76635768811342
2566
+ - type: cos_sim_recall
2567
+ value: 83.3307668617185
2568
+ - type: dot_accuracy
2569
+ value: 88.20584468506229
2570
+ - type: dot_ap
2571
+ value: 83.591632302697
2572
+ - type: dot_f1
2573
+ value: 76.81739705396173
2574
+ - type: dot_precision
2575
+ value: 73.45275728837373
2576
+ - type: dot_recall
2577
+ value: 80.50508161379734
2578
+ - type: euclidean_accuracy
2579
+ value: 88.64633057787093
2580
+ - type: euclidean_ap
2581
+ value: 85.25705123182283
2582
+ - type: euclidean_f1
2583
+ value: 77.18535726329199
2584
+ - type: euclidean_precision
2585
+ value: 75.17699437997226
2586
+ - type: euclidean_recall
2587
+ value: 79.30397289805975
2588
+ - type: manhattan_accuracy
2589
+ value: 88.63274731245392
2590
+ - type: manhattan_ap
2591
+ value: 85.2376825633018
2592
+ - type: manhattan_f1
2593
+ value: 77.15810785937788
2594
+ - type: manhattan_precision
2595
+ value: 73.92255061014319
2596
+ - type: manhattan_recall
2597
+ value: 80.68986757006468
2598
+ - type: max_accuracy
2599
+ value: 88.85202002561415
2600
+ - type: max_ap
2601
+ value: 85.9835303311168
2602
+ - type: max_f1
2603
+ value: 78.25741142443962
2604
  ---
2605
+
2606
+ # ember-v1
2607
+
2608
+ <p align="center">
2609
+ <img src="https://console.llmrails.com/assets/img/logo-black.svg" width="150px">
2610
+ </p>
2611
+
2612
+ This model has been trained on an extensive corpus of text pairs that encompass a broad spectrum of domains, including finance, science, medicine, law, and various others. During the training process, we incorporated techniques derived from the [RetroMAE](https://arxiv.org/abs/2205.12035) and [SetFit](https://arxiv.org/abs/2209.11055) research papers.
2613
+
2614
+ We are pleased to offer this model as an API service through our platform, [LLMRails](https://llmrails.com/?ref=ember-v1). If you are interested, please don't hesitate to sign up.
2615
+
2616
+ ### Plans
2617
+ - The research paper will be published soon.
2618
+ - The v2 of the model is currently in development and will feature an extended maximum sequence length of 4,000 tokens.
2619
+
2620
+ ## Usage
2621
+ Use with API request:
2622
+ ```bash
2623
+ curl --location 'https://api.llmrails.com/v1/embeddings' \
2624
+ --header 'X-API-KEY: {token}' \
2625
+ --header 'Content-Type: application/json' \
2626
+ --data '{
2627
+ "input": ["This is an example sentence"],
2628
+ "model":"embedding-english-v1" # equals to ember-v1
2629
+ }'
2630
+ ```
2631
+ API docs: https://docs.llmrails.com/embedding/embed-text<br>
2632
+ Langchain plugin: https://python.langchain.com/docs/integrations/text_embedding/llm_rails
2633
+
2634
+ Use with transformers:
2635
+ ```python
2636
+ import torch.nn.functional as F
2637
+ from torch import Tensor
2638
+ from transformers import AutoTokenizer, AutoModel
2639
+
2640
+ def average_pool(last_hidden_states: Tensor,
2641
+ attention_mask: Tensor) -> Tensor:
2642
+ last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
2643
+ return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
2644
+
2645
+ input_texts = [
2646
+ "This is an example sentence",
2647
+ "Each sentence is converted"
2648
+ ]
2649
+
2650
+ tokenizer = AutoTokenizer.from_pretrained("llmrails/ember-v1")
2651
+ model = AutoModel.from_pretrained("llmrails/ember-v1")
2652
+
2653
+ # Tokenize the input texts
2654
+ batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
2655
+
2656
+ outputs = model(**batch_dict)
2657
+ embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
2658
+
2659
+ # (Optionally) normalize embeddings
2660
+ embeddings = F.normalize(embeddings, p=2, dim=1)
2661
+ scores = (embeddings[:1] @ embeddings[1:].T) * 100
2662
+ print(scores.tolist())
2663
+ ```
2664
+
2665
+ Use with sentence-transformers:
2666
+ ```python
2667
+ from sentence_transformers import SentenceTransformer
2668
+ from sentence_transformers.util import cos_sim
2669
+
2670
+ sentences = [
2671
+ "This is an example sentence",
2672
+ "Each sentence is converted"
2673
+ ]
2674
+
2675
+ model = SentenceTransformer('llmrails/ember-v1')
2676
+ embeddings = model.encode(sentences)
2677
+ print(cos_sim(embeddings[0], embeddings[1]))
2678
+ ```
2679
+
2680
+ ## Massive Text Embedding Benchmark (MTEB) Evaluation
2681
+ Our model achieve state-of-the-art performance on [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard)
2682
+
2683
+ | Model Name | Dimension | Sequence Length | Average (56) |
2684
+ |:-----------------------------------------------------------------------:|:---------:|:---:|:------------:|
2685
+ | [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | 64.23 |
2686
+ | [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 |
2687
+ | [ember-v1](https://huggingface.co/llmrails/emmbedding-en-v1) | 1024 | 512 | **63.54** |
2688
+ | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings/types-of-embedding-models) | 1536 | 8191 | 60.99 |
2689
+
2690
+ ### Limitation
2691
+
2692
+ This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/llmrails_luna-v1/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.33.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ }
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e518be275958e79b6b97206171cfa6904418fc25e3afcba96eb9a980e624bb67
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db920ba31c54e195b10765d0b5c7f2ea930c7ff429649c8225214c862349a22f
3
+ size 1336854281
onnx/model_quantized.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8242b9a445ccae414ba6bfc84c27b3bb66127969ea7b6d320d0ea5c643317b71
3
+ size 336983163
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63cd396b456f848b7e643f3d6a703a01c7b08337519ee1bf5accbc12c8ea1998
3
+ size 1340699369
quantize_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "per_channel": true,
3
+ "reduce_range": true,
4
+ "per_model_config": {
5
+ "model": {
6
+ "op_types": [
7
+ "Mul",
8
+ "Div",
9
+ "Gather",
10
+ "Constant",
11
+ "Reshape",
12
+ "Cast",
13
+ "Slice",
14
+ "Sub",
15
+ "Sqrt",
16
+ "Unsqueeze",
17
+ "Add",
18
+ "Transpose",
19
+ "Softmax",
20
+ "ReduceMean",
21
+ "Shape",
22
+ "Concat",
23
+ "Erf",
24
+ "MatMul",
25
+ "Pow"
26
+ ],
27
+ "weight_type": "QInt8"
28
+ }
29
+ }
30
+ }
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "mask_token": "[MASK]",
7
+ "model_max_length": 512,
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "strip_accents": null,
12
+ "tokenize_chinese_chars": true,
13
+ "tokenizer_class": "BertTokenizer",
14
+ "unk_token": "[UNK]"
15
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff