--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-summarization-zero-shot-headers-and-better-prompt results: [] --- # t5-summarization-zero-shot-headers-and-better-prompt This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2226 - Rouge: {'rouge1': 0.4351, 'rouge2': 0.2124, 'rougeL': 0.215, 'rougeLsum': 0.215} - Bert Score: 0.8806 - Bleurt 20: -0.7502 - Gen Len: 14.645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge | Bert Score | Bleurt 20 | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------:|:----------:|:---------:|:-------:| | 3.0683 | 1.0 | 186 | 2.5857 | {'rouge1': 0.4573, 'rouge2': 0.1803, 'rougeL': 0.1858, 'rougeLsum': 0.1858} | 0.8683 | -0.8521 | 15.445 | | 2.7283 | 2.0 | 372 | 2.4092 | {'rouge1': 0.446, 'rouge2': 0.1853, 'rougeL': 0.1969, 'rougeLsum': 0.1969} | 0.8709 | -0.828 | 15.115 | | 2.4766 | 3.0 | 558 | 2.3190 | {'rouge1': 0.4183, 'rouge2': 0.1834, 'rougeL': 0.1947, 'rougeLsum': 0.1947} | 0.869 | -0.8673 | 14.425 | | 2.351 | 4.0 | 744 | 2.2736 | {'rouge1': 0.4264, 'rouge2': 0.1843, 'rougeL': 0.1919, 'rougeLsum': 0.1919} | 0.8693 | -0.8411 | 15.205 | | 2.287 | 5.0 | 930 | 2.2440 | {'rouge1': 0.42, 'rouge2': 0.1924, 'rougeL': 0.1991, 'rougeLsum': 0.1991} | 0.875 | -0.8358 | 14.305 | | 2.1426 | 6.0 | 1116 | 2.2100 | {'rouge1': 0.4196, 'rouge2': 0.1903, 'rougeL': 0.2027, 'rougeLsum': 0.2027} | 0.8779 | -0.8189 | 14.38 | | 2.0381 | 7.0 | 1302 | 2.2171 | {'rouge1': 0.459, 'rouge2': 0.2143, 'rougeL': 0.2142, 'rougeLsum': 0.2142} | 0.8772 | -0.7757 | 14.825 | | 1.9927 | 8.0 | 1488 | 2.2106 | {'rouge1': 0.44, 'rouge2': 0.2073, 'rougeL': 0.2132, 'rougeLsum': 0.2132} | 0.8795 | -0.7798 | 14.53 | | 1.9347 | 9.0 | 1674 | 2.1976 | {'rouge1': 0.4289, 'rouge2': 0.2062, 'rougeL': 0.2122, 'rougeLsum': 0.2122} | 0.88 | -0.7774 | 14.14 | | 1.8733 | 10.0 | 1860 | 2.1987 | {'rouge1': 0.4472, 'rouge2': 0.215, 'rougeL': 0.2124, 'rougeLsum': 0.2124} | 0.8791 | -0.7688 | 14.49 | | 1.7883 | 11.0 | 2046 | 2.1963 | {'rouge1': 0.4375, 'rouge2': 0.2114, 'rougeL': 0.2064, 'rougeLsum': 0.2064} | 0.8786 | -0.785 | 14.66 | | 1.8253 | 12.0 | 2232 | 2.2055 | {'rouge1': 0.4351, 'rouge2': 0.2073, 'rougeL': 0.2106, 'rougeLsum': 0.2106} | 0.8803 | -0.7759 | 14.59 | | 1.7751 | 13.0 | 2418 | 2.2029 | {'rouge1': 0.4371, 'rouge2': 0.2125, 'rougeL': 0.2119, 'rougeLsum': 0.2119} | 0.8796 | -0.7711 | 14.7 | | 1.7087 | 14.0 | 2604 | 2.2073 | {'rouge1': 0.448, 'rouge2': 0.2211, 'rougeL': 0.2176, 'rougeLsum': 0.2176} | 0.8806 | -0.7492 | 14.695 | | 1.7034 | 15.0 | 2790 | 2.2150 | {'rouge1': 0.4381, 'rouge2': 0.214, 'rougeL': 0.2158, 'rougeLsum': 0.2158} | 0.8809 | -0.7611 | 14.555 | | 1.6671 | 16.0 | 2976 | 2.2211 | {'rouge1': 0.4388, 'rouge2': 0.2162, 'rougeL': 0.2169, 'rougeLsum': 0.2169} | 0.8797 | -0.7532 | 14.73 | | 1.6964 | 17.0 | 3162 | 2.2207 | {'rouge1': 0.4316, 'rouge2': 0.2117, 'rougeL': 0.2137, 'rougeLsum': 0.2137} | 0.8799 | -0.7729 | 14.54 | | 1.6556 | 18.0 | 3348 | 2.2183 | {'rouge1': 0.4379, 'rouge2': 0.2122, 'rougeL': 0.2163, 'rougeLsum': 0.2163} | 0.8804 | -0.7475 | 14.735 | | 1.6391 | 19.0 | 3534 | 2.2200 | {'rouge1': 0.4332, 'rouge2': 0.2105, 'rougeL': 0.2149, 'rougeLsum': 0.2149} | 0.8805 | -0.7521 | 14.635 | | 1.6309 | 20.0 | 3720 | 2.2226 | {'rouge1': 0.4351, 'rouge2': 0.2124, 'rougeL': 0.215, 'rougeLsum': 0.215} | 0.8806 | -0.7502 | 14.645 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0