File size: 1,991 Bytes
3b430b4 1973aad 3b430b4 1973aad 3b430b4 1973aad 3b430b4 1973aad 3b430b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: agpl-3.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- spearmanr
pipeline_tag: sentence-similarity
base_model: vesteinn/XLMR-ENIS
model-index:
- name: XLMR-ENIS-finetuned-stsb
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: glue
type: glue
args: stsb
metrics:
- type: spearmanr
value: 0.8887885342806044
name: Spearmanr
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLMR-ENIS-finetuned-stsb
This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5232
- Pearson: 0.8915
- Spearmanr: 0.8888
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|
| No log | 1.0 | 360 | 0.6330 | 0.8562 | 0.8570 |
| 1.2835 | 2.0 | 720 | 0.6368 | 0.8790 | 0.8781 |
| 0.4518 | 3.0 | 1080 | 0.5352 | 0.8883 | 0.8852 |
| 0.4518 | 4.0 | 1440 | 0.4881 | 0.8910 | 0.8885 |
| 0.288 | 5.0 | 1800 | 0.5232 | 0.8915 | 0.8888 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.0
- Tokenizers 0.10.3
|