File size: 1,964 Bytes
27ed4f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: canine-c-finetuned-mrpc
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: glue
      type: glue
      args: mrpc
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8627450980392157
    - name: F1
      type: f1
      value: 0.9014084507042254
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# canine-c-finetuned-mrpc

This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4066
- Accuracy: 0.8627
- F1: 0.9014

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log        | 1.0   | 230  | 0.5014          | 0.7696   | 0.8479 |
| No log        | 2.0   | 460  | 0.4755          | 0.7892   | 0.8622 |
| 0.5096        | 3.0   | 690  | 0.3645          | 0.8431   | 0.8869 |
| 0.5096        | 4.0   | 920  | 0.4066          | 0.8627   | 0.9014 |
| 0.2619        | 5.0   | 1150 | 0.4551          | 0.8431   | 0.8877 |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6