File size: 1,966 Bytes
ae4a580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- spearmanr
model-index:
- name: distilbert-base-uncased-finetuned-stsb
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: glue
      type: glue
      args: stsb
    metrics:
    - name: Spearmanr
      type: spearmanr
      value: 0.8636303639161342
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-stsb

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5644
- Pearson: 0.8666
- Spearmanr: 0.8636

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|
| No log        | 1.0   | 360  | 0.6366          | 0.8537  | 0.8516    |
| 1.0464        | 2.0   | 720  | 0.6171          | 0.8632  | 0.8626    |
| 0.4002        | 3.0   | 1080 | 0.6082          | 0.8663  | 0.8643    |
| 0.4002        | 4.0   | 1440 | 0.5644          | 0.8666  | 0.8636    |
| 0.2479        | 5.0   | 1800 | 0.5780          | 0.8654  | 0.8624    |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6