vincent1337 commited on
Commit
1df0134
1 Parent(s): 7faac47

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ datasets:
9
+ - ag_news
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: FSU-Miami Postponed Hurricane Frances forces the postponement of Monday's
14
+ college football season opener between Florida State and Miami.
15
+ - text: Lenovo to buy IBM PC arm IBM said late Tuesday that it will sell its personal
16
+ computer division, transferring an iconic brand to a Chinese rival that also will
17
+ absorb about 2,000 local workers.
18
+ - text: 'NBA Roundup: Sonics fly high again in Philly PHILADELPHIA - Wide open or
19
+ contested, the Seattle SuperSonics hit three-pointers from all over the court.
20
+ Ray Allen scored a season-high 37 points, Rashard Lewis had 21 and Vladimir Radmanovic
21
+ added 20, leading '
22
+ - text: Democrats Come to Observe Convention (AP) AP - The Democrats have come to
23
+ town to prick rhetorical balloons at the Republican National Convention.
24
+ - text: 'US women into final The United States edged past world champions Germany
25
+ in a dramatic 2-1 victory to seal their place in the women #39;s football final.'
26
+ pipeline_tag: text-classification
27
+ inference: true
28
+ base_model: sentence-transformers/paraphrase-MiniLM-L3-v2
29
+ ---
30
+
31
+ # SetFit with sentence-transformers/paraphrase-MiniLM-L3-v2
32
+
33
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [ag_news](https://huggingface.co/datasets/ag_news) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
34
+
35
+ The model has been trained using an efficient few-shot learning technique that involves:
36
+
37
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
38
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
39
+
40
+ ## Model Details
41
+
42
+ ### Model Description
43
+ - **Model Type:** SetFit
44
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2)
45
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
46
+ - **Maximum Sequence Length:** 128 tokens
47
+ <!-- - **Number of Classes:** Unknown -->
48
+ - **Training Dataset:** [ag_news](https://huggingface.co/datasets/ag_news)
49
+ <!-- - **Language:** Unknown -->
50
+ <!-- - **License:** Unknown -->
51
+
52
+ ### Model Sources
53
+
54
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
55
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
56
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
57
+
58
+ ## Uses
59
+
60
+ ### Direct Use for Inference
61
+
62
+ First install the SetFit library:
63
+
64
+ ```bash
65
+ pip install setfit
66
+ ```
67
+
68
+ Then you can load this model and run inference.
69
+
70
+ ```python
71
+ from setfit import SetFitModel
72
+
73
+ # Download from the 🤗 Hub
74
+ model = SetFitModel.from_pretrained("vincent1337/test_student_model")
75
+ # Run inference
76
+ preds = model("FSU-Miami Postponed Hurricane Frances forces the postponement of Monday's college football season opener between Florida State and Miami.")
77
+ ```
78
+
79
+ <!--
80
+ ### Downstream Use
81
+
82
+ *List how someone could finetune this model on their own dataset.*
83
+ -->
84
+
85
+ <!--
86
+ ### Out-of-Scope Use
87
+
88
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
89
+ -->
90
+
91
+ <!--
92
+ ## Bias, Risks and Limitations
93
+
94
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
95
+ -->
96
+
97
+ <!--
98
+ ### Recommendations
99
+
100
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
101
+ -->
102
+
103
+ ## Training Details
104
+
105
+ ### Training Set Metrics
106
+ | Training set | Min | Median | Max |
107
+ |:-------------|:----|:-------|:----|
108
+ | Word count | 18 | 36.04 | 51 |
109
+
110
+ ### Training Hyperparameters
111
+ - batch_size: (16, 16)
112
+ - num_epochs: (1, 16)
113
+ - max_steps: 50
114
+ - sampling_strategy: oversampling
115
+ - body_learning_rate: (2e-05, 1e-05)
116
+ - head_learning_rate: 0.01
117
+ - loss: CosineSimilarityLoss
118
+ - distance_metric: cosine_distance
119
+ - margin: 0.25
120
+ - end_to_end: False
121
+ - use_amp: False
122
+ - warmup_proportion: 0.1
123
+ - seed: 42
124
+ - eval_max_steps: -1
125
+ - load_best_model_at_end: False
126
+
127
+ ### Training Results
128
+ | Epoch | Step | Training Loss | Validation Loss |
129
+ |:------:|:----:|:-------------:|:---------------:|
130
+ | 0.0196 | 1 | 0.8923 | - |
131
+ | 0.9804 | 50 | 0.0968 | - |
132
+ | 0.0196 | 1 | 0.0852 | - |
133
+ | 0.9804 | 50 | 0.0048 | - |
134
+
135
+ ### Framework Versions
136
+ - Python: 3.10.12
137
+ - SetFit: 1.0.3
138
+ - Sentence Transformers: 2.7.0
139
+ - Transformers: 4.38.2
140
+ - PyTorch: 2.2.1+cu121
141
+ - Datasets: 2.18.0
142
+ - Tokenizers: 0.15.2
143
+
144
+ ## Citation
145
+
146
+ ### BibTeX
147
+ ```bibtex
148
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
149
+ doi = {10.48550/ARXIV.2209.11055},
150
+ url = {https://arxiv.org/abs/2209.11055},
151
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
152
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
153
+ title = {Efficient Few-Shot Learning Without Prompts},
154
+ publisher = {arXiv},
155
+ year = {2022},
156
+ copyright = {Creative Commons Attribution 4.0 International}
157
+ }
158
+ ```
159
+
160
+ <!--
161
+ ## Glossary
162
+
163
+ *Clearly define terms in order to be accessible across audiences.*
164
+ -->
165
+
166
+ <!--
167
+ ## Model Card Authors
168
+
169
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
170
+ -->
171
+
172
+ <!--
173
+ ## Model Card Contact
174
+
175
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
176
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-MiniLM-L3-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 3,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.38.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7186a389b5506395e9a990cfa53d1c6323a1abeb9696083f7b685171e14725ca
3
+ size 69565312
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab3125c6477984b8bb8386adfcff15064140cf734bdf2ae6cea453f33b60043b
3
+ size 13191
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff