File size: 36,735 Bytes
d45999f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What are the potential risks associated with the impersonation
and cyber-attacks mentioned in the context?
sentences:
- "Technology Engagement Center \nUber Technologies \nUniversity of Pittsburgh \n\
Undergraduate Student \nCollaborative \nUpturn \nUS Technology Policy Committee\
\ \nof the Association of Computing \nMachinery \nVirginia Puccio \nVisar Berisha\
\ and Julie Liss \nXR Association \nXR Safety Initiative \n• As an additional\
\ effort to reach out to stakeholders regarding the RFI, OSTP conducted two listening\
\ sessions\nfor members of the public. The listening sessions together drew upwards\
\ of 300 participants. The Science and\nTechnology Policy Institute produced a\
\ synopsis of both the RFI submissions and the feedback at the listening\nsessions.115\n\
61"
- "across all subgroups, which could leave the groups facing underperformance with\
\ worse outcomes than \nif no GAI system were used. Disparate or reduced performance\
\ for lower-resource languages also \npresents challenges to model adoption, inclusion,\
\ and accessibility, and may make preservation of \nendangered languages more\
\ difficult if GAI systems become embedded in everyday processes that would \notherwise\
\ have been opportunities to use these languages. \nBias is mutually reinforcing\
\ with the problem of undesired homogenization, in which GAI systems \nproduce\
\ skewed distributions of outputs that are overly uniform (for example, repetitive\
\ aesthetic styles"
- "impersonation, cyber-attacks, and weapons creation. \nCBRN Information or Capabilities;\
\ \nInformation Security \nMS-2.6-007 Regularly evaluate GAI system vulnerabilities\
\ to possible circumvention of safety \nmeasures. \nCBRN Information or Capabilities;\
\ \nInformation Security \nAI Actor Tasks: AI Deployment, AI Impact Assessment,\
\ Domain Experts, Operation and Monitoring, TEVV"
- source_sentence: What techniques are suggested to assess and manage statistical
biases related to GAI content provenance?
sentences:
- "2 \nThis work was informed by public feedback and consultations with diverse\
\ stakeholder groups as part of NIST’s \nGenerative AI Public Working Group (GAI\
\ PWG). The GAI PWG was an open, transparent, and collaborative \nprocess, facilitated\
\ via a virtual workspace, to obtain multistakeholder input on GAI risk management\
\ and to \ninform NIST’s approach. \nThe focus of the GAI PWG was limited to four\
\ primary considerations relevant to GAI: Governance, Content \nProvenance, Pre-deployment\
\ Testing, and Incident Disclosure (further described in Appendix A). As such,\
\ the \nsuggested actions in this document primarily address these considerations.\
\ \nFuture revisions of this profile will include additional AI RMF subcategories,\
\ risks, and suggested actions based \non additional considerations of GAI as\
\ the space evolves and empirical evidence indicates additional risks. A \nglossary\
\ of terms pertinent to GAI risk management will be developed and hosted on NIST’s\
\ Trustworthy &"
- "30 \nMEASURE 2.2: Evaluations involving human subjects meet applicable requirements\
\ (including human subject protection) and are \nrepresentative of the relevant\
\ population. \nAction ID \nSuggested Action \nGAI Risks \nMS-2.2-001 Assess and\
\ manage statistical biases related to GAI content provenance through \ntechniques\
\ such as re-sampling, re-weighting, or adversarial training. \nInformation Integrity;\
\ Information \nSecurity; Harmful Bias and \nHomogenization \nMS-2.2-002 \nDocument\
\ how content provenance data is tracked and how that data interacts \nwith privacy\
\ and security. Consider: Anonymizing data to protect the privacy of \nhuman subjects;\
\ Leveraging privacy output filters; Removing any personally \nidentifiable information\
\ (PII) to prevent potential harm or misuse. \nData Privacy; Human AI \nConfiguration;\
\ Information \nIntegrity; Information Security; \nDangerous, Violent, or Hateful\
\ \nContent \nMS-2.2-003 Provide human subjects with options to withdraw participation\
\ or revoke their"
- "humans (e.g., intelligence tests, professional licensing exams) does not guarantee\
\ GAI system validity or \nreliability in those domains. Similarly, jailbreaking\
\ or prompt engineering tests may not systematically \nassess validity or reliability\
\ risks. \nMeasurement gaps can arise from mismatches between laboratory and\
\ real-world settings. Current \ntesting approaches often remain focused on laboratory\
\ conditions or restricted to benchmark test \ndatasets and in silico techniques\
\ that may not extrapolate well to—or directly assess GAI impacts in real-\nworld\
\ conditions. For example, current measurement gaps for GAI make it difficult to\
\ precisely estimate \nits potential ecosystem-level or longitudinal risks and\
\ related political, social, and economic impacts. \nGaps between benchmarks and\
\ real-world use of GAI systems may likely be exacerbated due to prompt \nsensitivity\
\ and broad heterogeneity of contexts of use. \nA.1.5. Structured Public Feedback"
- source_sentence: How does the absence of an explanation regarding data usage affect
parents' ability to contest decisions made in child maltreatment assessments?
sentences:
- '62. See, e.g., Federal Trade Commission. Data Brokers: A Call for Transparency
and Accountability. May
2014.
https://www.ftc.gov/system/files/documents/reports/data-brokers-call-transparency-accountability
report-federal-trade-commission-may-2014/140527databrokerreport.pdf; Cathy O’Neil.
Weapons of Math Destruction. Penguin Books. 2017.
https://en.wikipedia.org/wiki/Weapons_of_Math_Destruction
63. See, e.g., Rachel Levinson-Waldman, Harsha Pandurnga, and Faiza Patel. Social
Media Surveillance by
the U.S. Government. Brennan Center for Justice. Jan. 7, 2022.
https://www.brennancenter.org/our-work/research-reports/social-media-surveillance-us-government;
Shoshana Zuboff. The Age of Surveillance Capitalism: The Fight for a Human Future
at the New Frontier of
Power. Public Affairs. 2019.
64. Angela Chen. Why the Future of Life Insurance May Depend on Your Online Presence.
The Verge. Feb.
7, 2019.'
- "NOTICE & \nEXPLANATION \nWHY THIS PRINCIPLE IS IMPORTANT\nThis section provides\
\ a brief summary of the problems which the principle seeks to address and protect\
\ \nagainst, including illustrative examples. \nAutomated systems now determine\
\ opportunities, from employment to credit, and directly shape the American \n\
public’s experiences, from the courtroom to online classrooms, in ways that profoundly\
\ impact people’s lives. But this \nexpansive impact is not always visible. An\
\ applicant might not know whether a person rejected their resume or a \nhiring\
\ algorithm moved them to the bottom of the list. A defendant in the courtroom\
\ might not know if a judge deny\ning their bail is informed by an automated\
\ system that labeled them “high risk.” From correcting errors to contesting \n\
decisions, people are often denied the knowledge they need to address the impact\
\ of automated systems on their lives."
- 'ever being notified that data was being collected and used as part of an algorithmic
child maltreatment
risk assessment.84 The lack of notice or an explanation makes it harder for those
performing child
maltreatment assessments to validate the risk assessment and denies parents knowledge
that could help them
contest a decision.
41'
- source_sentence: How should automated systems be tested to ensure they are free
from algorithmic discrimination?
sentences:
- "Homogenization? arXiv. https://arxiv.org/pdf/2211.13972 \nBoyarskaya, M. et al.\
\ (2020) Overcoming Failures of Imagination in AI Infused System Development and\
\ \nDeployment. arXiv. https://arxiv.org/pdf/2011.13416 \nBrowne, D. et al. (2023)\
\ Securing the AI Pipeline. Mandiant. \nhttps://www.mandiant.com/resources/blog/securing-ai-pipeline\
\ \nBurgess, M. (2024) Generative AI’s Biggest Security Flaw Is Not Easy to Fix.\
\ WIRED. \nhttps://www.wired.com/story/generative-ai-prompt-injection-hacking/\
\ \nBurtell, M. et al. (2024) The Surprising Power of Next Word Prediction: Large\
\ Language Models \nExplained, Part 1. Georgetown Center for Security and Emerging\
\ Technology. \nhttps://cset.georgetown.edu/article/the-surprising-power-of-next-word-prediction-large-language-\n\
models-explained-part-1/ \nCanadian Centre for Cyber Security (2023) Generative\
\ artificial intelligence (AI) - ITSAP.00.041. \nhttps://www.cyber.gc.ca/en/guidance/generative-artificial-intelligence-ai-itsap00041"
- "relevant biological and chemical threat knowledge and information is often publicly\
\ accessible, LLMs \ncould facilitate its analysis or synthesis, particularly\
\ by individuals without formal scientific training or \nexpertise. \nRecent research\
\ on this topic found that LLM outputs regarding biological threat creation and\
\ attack \nplanning provided minimal assistance beyond traditional search engine\
\ queries, suggesting that state-of-\nthe-art LLMs at the time these studies were\
\ conducted do not substantially increase the operational \nlikelihood of such\
\ an attack. The physical synthesis development, production, and use of chemical\
\ or \nbiological agents will continue to require both applicable expertise and\
\ supporting materials and \ninfrastructure. The impact of GAI on chemical or\
\ biological agent misuse will depend on what the key \nbarriers for malicious\
\ actors are (e.g., whether information access is one such barrier), and how well\
\ GAI \ncan help actors address those barriers."
- "WHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\nThe expectations for automated\
\ systems are meant to serve as a blueprint for the development of additional\
\ \ntechnical standards and practices that are tailored for particular sectors\
\ and contexts. \nAny automated system should be tested to help ensure it is free\
\ from algorithmic discrimination before it can be \nsold or used. Protection\
\ against algorithmic discrimination should include designing to ensure equity,\
\ broadly \nconstrued. Some algorithmic discrimination is already prohibited\
\ under existing anti-discrimination law. The \nexpectations set out below describe\
\ proactive technical and policy steps that can be taken to not only \nreinforce\
\ those legal protections but extend beyond them to ensure equity for underserved\
\ communities48 \neven in circumstances where a specific legal protection may\
\ not be clearly established. These protections"
- source_sentence: What rights do applicants have if their application for credit
is denied according to the CFPB?
sentences:
- "listed organizations and individuals:\nAccenture \nAccess Now \nACT | The App\
\ Association \nAHIP \nAIethicist.org \nAirlines for America \nAlliance for Automotive\
\ Innovation \nAmelia Winger-Bearskin \nAmerican Civil Liberties Union \nAmerican\
\ Civil Liberties Union of \nMassachusetts \nAmerican Medical Association \nARTICLE19\
\ \nAttorneys General of the District of \nColumbia, Illinois, Maryland, \nMichigan,\
\ Minnesota, New York, \nNorth Carolina, Oregon, Vermont, \nand Washington \n\
Avanade \nAware \nBarbara Evans \nBetter Identity Coalition \nBipartisan Policy\
\ Center \nBrandon L. Garrett and Cynthia \nRudin \nBrian Krupp \nBrooklyn Defender\
\ Services \nBSA | The Software Alliance \nCarnegie Mellon University \nCenter\
\ for Democracy & \nTechnology \nCenter for New Democratic \nProcesses \nCenter\
\ for Research and Education \non Accessible Technology and \nExperiences at University\
\ of \nWashington, Devva Kasnitz, L Jean \nCamp, Jonathan Lazar, Harry \nHochheiser\
\ \nCenter on Privacy & Technology at \nGeorgetown Law \nCisco Systems"
- "even if the inferences are not accurate (e.g., confabulations), and especially\
\ if they reveal information \nthat the individual considers sensitive or that\
\ is used to disadvantage or harm them. \nBeyond harms from information exposure\
\ (such as extortion or dignitary harm), wrong or inappropriate \ninferences of\
\ PII can contribute to downstream or secondary harmful impacts. For example,\
\ predictive \ninferences made by GAI models based on PII or protected attributes\
\ can contribute to adverse decisions, \nleading to representational or allocative\
\ harms to individuals or groups (see Harmful Bias and \nHomogenization below)."
- "information in their credit report.\" The CFPB has also asserted that \"[t]he\
\ law gives every applicant the right to \na specific explanation if their application\
\ for credit was denied, and that right is not diminished simply because \na company\
\ uses a complex algorithm that it doesn't understand.\"92 Such explanations illustrate\
\ a shared value \nthat certain decisions need to be explained. \nA California\
\ law requires that warehouse employees are provided with notice and explana-\n\
tion about quotas, potentially facilitated by automated systems, that apply to\
\ them. Warehous-\ning employers in California that use quota systems (often facilitated\
\ by algorithmic monitoring systems) are \nrequired to provide employees with\
\ a written description of each quota that applies to the employee, including\
\ \n“quantified number of tasks to be performed or materials to be produced or\
\ handled, within the defined"
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.98
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.98
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333334
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999996
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.98
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9913092975357145
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9883333333333333
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9883333333333334
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.98
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 1.0
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 1.0
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.98
name: Dot Precision@1
- type: dot_precision@3
value: 0.3333333333333334
name: Dot Precision@3
- type: dot_precision@5
value: 0.19999999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.98
name: Dot Recall@1
- type: dot_recall@3
value: 1.0
name: Dot Recall@3
- type: dot_recall@5
value: 1.0
name: Dot Recall@5
- type: dot_recall@10
value: 1.0
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9913092975357145
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9883333333333333
name: Dot Mrr@10
- type: dot_map@100
value: 0.9883333333333334
name: Dot Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("vincha77/finetuned_arctic")
# Run inference
sentences = [
'What rights do applicants have if their application for credit is denied according to the CFPB?',
'information in their credit report." The CFPB has also asserted that "[t]he law gives every applicant the right to \na specific explanation if their application for credit was denied, and that right is not diminished simply because \na company uses a complex algorithm that it doesn\'t understand."92 Such explanations illustrate a shared value \nthat certain decisions need to be explained. \nA California law requires that warehouse employees are provided with notice and explana-\ntion about quotas, potentially facilitated by automated systems, that apply to them. Warehous-\ning employers in California that use quota systems (often facilitated by algorithmic monitoring systems) are \nrequired to provide employees with a written description of each quota that applies to the employee, including \n“quantified number of tasks to be performed or materials to be produced or handled, within the defined',
'even if the inferences are not accurate (e.g., confabulations), and especially if they reveal information \nthat the individual considers sensitive or that is used to disadvantage or harm them. \nBeyond harms from information exposure (such as extortion or dignitary harm), wrong or inappropriate \ninferences of PII can contribute to downstream or secondary harmful impacts. For example, predictive \ninferences made by GAI models based on PII or protected attributes can contribute to adverse decisions, \nleading to representational or allocative harms to individuals or groups (see Harmful Bias and \nHomogenization below).',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.98 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.98 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.98 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9913 |
| cosine_mrr@10 | 0.9883 |
| **cosine_map@100** | **0.9883** |
| dot_accuracy@1 | 0.98 |
| dot_accuracy@3 | 1.0 |
| dot_accuracy@5 | 1.0 |
| dot_accuracy@10 | 1.0 |
| dot_precision@1 | 0.98 |
| dot_precision@3 | 0.3333 |
| dot_precision@5 | 0.2 |
| dot_precision@10 | 0.1 |
| dot_recall@1 | 0.98 |
| dot_recall@3 | 1.0 |
| dot_recall@5 | 1.0 |
| dot_recall@10 | 1.0 |
| dot_ndcg@10 | 0.9913 |
| dot_mrr@10 | 0.9883 |
| dot_map@100 | 0.9883 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 600 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 600 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 12 tokens</li><li>mean: 21.21 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 182.02 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What are the responsibilities of AI Actors in monitoring reported issues related to GAI system performance?</code> | <code>45 <br>MG-4.1-007 <br>Verify that AI Actors responsible for monitoring reported issues can effectively <br>evaluate GAI system performance including the application of content <br>provenance data tracking techniques, and promptly escalate issues for response. <br>Human-AI Configuration; <br>Information Integrity <br>AI Actor Tasks: AI Deployment, Affected Individuals and Communities, Domain Experts, End-Users, Human Factors, Operation and <br>Monitoring <br> <br>MANAGE 4.2: Measurable activities for continual improvements are integrated into AI system updates and include regular <br>engagement with interested parties, including relevant AI Actors. <br>Action ID <br>Suggested Action <br>GAI Risks <br>MG-4.2-001 Conduct regular monitoring of GAI systems and publish reports detailing the <br>performance, feedback received, and improvements made. <br>Harmful Bias and Homogenization <br>MG-4.2-002 <br>Practice and follow incident response plans for addressing the generation of</code> |
| <code>How are measurable activities for continual improvements integrated into AI system updates according to the context provided?</code> | <code>45 <br>MG-4.1-007 <br>Verify that AI Actors responsible for monitoring reported issues can effectively <br>evaluate GAI system performance including the application of content <br>provenance data tracking techniques, and promptly escalate issues for response. <br>Human-AI Configuration; <br>Information Integrity <br>AI Actor Tasks: AI Deployment, Affected Individuals and Communities, Domain Experts, End-Users, Human Factors, Operation and <br>Monitoring <br> <br>MANAGE 4.2: Measurable activities for continual improvements are integrated into AI system updates and include regular <br>engagement with interested parties, including relevant AI Actors. <br>Action ID <br>Suggested Action <br>GAI Risks <br>MG-4.2-001 Conduct regular monitoring of GAI systems and publish reports detailing the <br>performance, feedback received, and improvements made. <br>Harmful Bias and Homogenization <br>MG-4.2-002 <br>Practice and follow incident response plans for addressing the generation of</code> |
| <code>What is the main function of the app discussed in Samantha Cole's article from June 26, 2019?</code> | <code>them<br>10. Samantha Cole. This Horrifying App Undresses a Photo of Any Woman With a Single Click. Motherboard.<br>June 26, 2019. https://www.vice.com/en/article/kzm59x/deepnude-app-creates-fake-nudes-of-any-woman<br>11. Lauren Kaori Gurley. Amazon’s AI Cameras Are Punishing Drivers for Mistakes They Didn’t Make.<br>Motherboard. Sep. 20, 2021. https://www.vice.com/en/article/88npjv/amazons-ai-cameras-are-punishing<br>drivers-for-mistakes-they-didnt-make<br>63</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 1.0 | 38 | 0.965 |
| 1.3158 | 50 | 0.9783 |
| 2.0 | 76 | 0.9767 |
| 2.6316 | 100 | 0.9833 |
| 3.0 | 114 | 0.9883 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |