File size: 36,735 Bytes
d45999f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What are the potential risks associated with the impersonation
    and cyber-attacks mentioned in the context?
  sentences:
  - "Technology Engagement Center \nUber Technologies \nUniversity of Pittsburgh \n\
    Undergraduate Student \nCollaborative \nUpturn \nUS Technology Policy Committee\
    \ \nof the Association of Computing \nMachinery \nVirginia Puccio \nVisar Berisha\
    \ and Julie Liss \nXR Association \nXR Safety Initiative \n• As an additional\
    \ effort to reach out to stakeholders regarding the RFI, OSTP conducted two listening\
    \ sessions\nfor members of the public. The listening sessions together drew upwards\
    \ of 300 participants. The Science and\nTechnology Policy Institute produced a\
    \ synopsis of both the RFI submissions and the feedback at the listening\nsessions.115\n\
    61"
  - "across all subgroups, which could leave the groups facing underperformance with\
    \ worse outcomes than \nif no GAI system were used. Disparate or reduced performance\
    \ for lower-resource languages also \npresents challenges to model adoption, inclusion,\
    \ and accessibility, and may make preservation of \nendangered languages more\
    \ difficult if GAI systems become embedded in everyday processes that would \notherwise\
    \ have been opportunities to use these languages.  \nBias is mutually reinforcing\
    \ with the problem of undesired homogenization, in which GAI systems \nproduce\
    \ skewed distributions of outputs that are overly uniform (for example, repetitive\
    \ aesthetic styles"
  - "impersonation, cyber-attacks, and weapons creation. \nCBRN Information or Capabilities;\
    \ \nInformation Security \nMS-2.6-007 Regularly evaluate GAI system vulnerabilities\
    \ to possible circumvention of safety \nmeasures.  \nCBRN Information or Capabilities;\
    \ \nInformation Security \nAI Actor Tasks: AI Deployment, AI Impact Assessment,\
    \ Domain Experts, Operation and Monitoring, TEVV"
- source_sentence: What techniques are suggested to assess and manage statistical
    biases related to GAI content provenance?
  sentences:
  - "2 \nThis work was informed by public feedback and consultations with diverse\
    \ stakeholder groups as part of NIST’s \nGenerative AI Public Working Group (GAI\
    \ PWG). The GAI PWG was an open, transparent, and collaborative \nprocess, facilitated\
    \ via a virtual workspace, to obtain multistakeholder input on GAI risk management\
    \ and to \ninform NIST’s approach. \nThe focus of the GAI PWG was limited to four\
    \ primary considerations relevant to GAI: Governance, Content \nProvenance, Pre-deployment\
    \ Testing, and Incident Disclosure (further described in Appendix A). As such,\
    \ the \nsuggested actions in this document primarily address these considerations.\
    \ \nFuture revisions of this profile will include additional AI RMF subcategories,\
    \ risks, and suggested actions based \non additional considerations of GAI as\
    \ the space evolves and empirical evidence indicates additional risks. A \nglossary\
    \ of terms pertinent to GAI risk management will be developed and hosted on NIST’s\
    \ Trustworthy &"
  - "30 \nMEASURE 2.2: Evaluations involving human subjects meet applicable requirements\
    \ (including human subject protection) and are \nrepresentative of the relevant\
    \ population. \nAction ID \nSuggested Action \nGAI Risks \nMS-2.2-001 Assess and\
    \ manage statistical biases related to GAI content provenance through \ntechniques\
    \ such as re-sampling, re-weighting, or adversarial training. \nInformation Integrity;\
    \ Information \nSecurity; Harmful Bias and \nHomogenization \nMS-2.2-002 \nDocument\
    \ how content provenance data is tracked and how that data interacts \nwith privacy\
    \ and security. Consider: Anonymizing data to protect the privacy of \nhuman subjects;\
    \ Leveraging privacy output filters; Removing any personally \nidentifiable information\
    \ (PII) to prevent potential harm or misuse. \nData Privacy; Human AI \nConfiguration;\
    \ Information \nIntegrity; Information Security; \nDangerous, Violent, or Hateful\
    \ \nContent \nMS-2.2-003 Provide human subjects with options to withdraw participation\
    \ or revoke their"
  - "humans (e.g., intelligence tests, professional licensing exams) does not guarantee\
    \ GAI system validity or \nreliability in those domains. Similarly, jailbreaking\
    \ or prompt engineering tests may not systematically \nassess validity or reliability\
    \ risks.  \nMeasurement gaps can arise from mismatches between laboratory and\
    \ real-world settings. Current \ntesting approaches often remain focused on laboratory\
    \ conditions or restricted to benchmark test \ndatasets and in silico techniques\
    \ that may not extrapolate well to—or directly assess GAI impacts in real-\nworld\
    \ conditions. For example, current measurement gaps for GAI make it difficult to\
    \ precisely estimate \nits potential ecosystem-level or longitudinal risks and\
    \ related political, social, and economic impacts. \nGaps between benchmarks and\
    \ real-world use of GAI systems may likely be exacerbated due to prompt \nsensitivity\
    \ and broad heterogeneity of contexts of use. \nA.1.5. Structured Public Feedback"
- source_sentence: How does the absence of an explanation regarding data usage affect
    parents' ability to contest decisions made in child maltreatment assessments?
  sentences:
  - '62. See, e.g., Federal Trade Commission. Data Brokers: A Call for Transparency
    and Accountability. May

    2014.

    https://www.ftc.gov/system/files/documents/reports/data-brokers-call-transparency-accountability­

    report-federal-trade-commission-may-2014/140527databrokerreport.pdf; Cathy O’Neil.

    Weapons of Math Destruction. Penguin Books. 2017.

    https://en.wikipedia.org/wiki/Weapons_of_Math_Destruction

    63. See, e.g., Rachel Levinson-Waldman, Harsha Pandurnga, and Faiza Patel. Social
    Media Surveillance by

    the U.S. Government. Brennan Center for Justice. Jan. 7, 2022.

    https://www.brennancenter.org/our-work/research-reports/social-media-surveillance-us-government;

    Shoshana Zuboff. The Age of Surveillance Capitalism: The Fight for a Human Future
    at the New Frontier of

    Power. Public Affairs. 2019.

    64. Angela Chen. Why the Future of Life Insurance May Depend on Your Online Presence.
    The Verge. Feb.

    7, 2019.'
  - "NOTICE & \nEXPLANATION \nWHY THIS PRINCIPLE IS IMPORTANT\nThis section provides\
    \ a brief summary of the problems which the principle seeks to address and protect\
    \ \nagainst, including illustrative examples. \nAutomated systems now determine\
    \ opportunities, from employment to credit, and directly shape the American \n\
    public’s experiences, from the courtroom to online classrooms, in ways that profoundly\
    \ impact people’s lives. But this \nexpansive impact is not always visible. An\
    \ applicant might not know whether a person rejected their resume or a \nhiring\
    \ algorithm moved them to the bottom of the list. A defendant in the courtroom\
    \ might not know if a judge deny­\ning their bail is informed by an automated\
    \ system that labeled them “high risk.” From correcting errors to contesting \n\
    decisions, people are often denied the knowledge they need to address the impact\
    \ of automated systems on their lives."
  - 'ever being notified that data was being collected and used as part of an algorithmic
    child maltreatment

    risk assessment.84 The lack of notice or an explanation makes it harder for those
    performing child

    maltreatment assessments to validate the risk assessment and denies parents knowledge
    that could help them

    contest a decision.

    41'
- source_sentence: How should automated systems be tested to ensure they are free
    from algorithmic discrimination?
  sentences:
  - "Homogenization? arXiv. https://arxiv.org/pdf/2211.13972 \nBoyarskaya, M. et al.\
    \ (2020) Overcoming Failures of Imagination in AI Infused System Development and\
    \ \nDeployment. arXiv. https://arxiv.org/pdf/2011.13416 \nBrowne, D. et al. (2023)\
    \ Securing the AI Pipeline. Mandiant. \nhttps://www.mandiant.com/resources/blog/securing-ai-pipeline\
    \ \nBurgess, M. (2024) Generative AI’s Biggest Security Flaw Is Not Easy to Fix.\
    \ WIRED. \nhttps://www.wired.com/story/generative-ai-prompt-injection-hacking/\
    \ \nBurtell, M. et al. (2024) The Surprising Power of Next Word Prediction: Large\
    \ Language Models \nExplained, Part 1. Georgetown Center for Security and Emerging\
    \ Technology. \nhttps://cset.georgetown.edu/article/the-surprising-power-of-next-word-prediction-large-language-\n\
    models-explained-part-1/ \nCanadian Centre for Cyber Security (2023) Generative\
    \ artificial intelligence (AI) - ITSAP.00.041. \nhttps://www.cyber.gc.ca/en/guidance/generative-artificial-intelligence-ai-itsap00041"
  - "relevant biological and chemical threat knowledge and information is often publicly\
    \ accessible, LLMs \ncould facilitate its analysis or synthesis, particularly\
    \ by individuals without formal scientific training or \nexpertise.  \nRecent research\
    \ on this topic found that LLM outputs regarding biological threat creation and\
    \ attack \nplanning provided minimal assistance beyond traditional search engine\
    \ queries, suggesting that state-of-\nthe-art LLMs at the time these studies were\
    \ conducted do not substantially increase the operational \nlikelihood of such\
    \ an attack. The physical synthesis development, production, and use of chemical\
    \ or \nbiological agents will continue to require both applicable expertise and\
    \ supporting materials and \ninfrastructure. The impact of GAI on chemical or\
    \ biological agent misuse will depend on what the key \nbarriers for malicious\
    \ actors are (e.g., whether information access is one such barrier), and how well\
    \ GAI \ncan help actors address those barriers."
  - "WHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\nThe expectations for automated\
    \ systems are meant to serve as a blueprint for the development of additional\
    \ \ntechnical standards and practices that are tailored for particular sectors\
    \ and contexts. \nAny automated system should be tested to help ensure it is free\
    \ from algorithmic discrimination before it can be \nsold or used. Protection\
    \ against algorithmic discrimination should include designing to ensure equity,\
    \ broadly \nconstrued.  Some algorithmic discrimination is already prohibited\
    \ under existing anti-discrimination law. The \nexpectations set out below describe\
    \ proactive technical and policy steps that can be taken to not only \nreinforce\
    \ those legal protections but extend beyond them to ensure equity for underserved\
    \ communities48 \neven in circumstances where a specific legal protection may\
    \ not be clearly established. These protections"
- source_sentence: What rights do applicants have if their application for credit
    is denied according to the CFPB?
  sentences:
  - "listed organizations and individuals:\nAccenture \nAccess Now \nACT | The App\
    \ Association \nAHIP \nAIethicist.org \nAirlines for America \nAlliance for Automotive\
    \ Innovation \nAmelia Winger-Bearskin \nAmerican Civil Liberties Union \nAmerican\
    \ Civil Liberties Union of \nMassachusetts \nAmerican Medical Association \nARTICLE19\
    \ \nAttorneys General of the District of \nColumbia, Illinois, Maryland, \nMichigan,\
    \ Minnesota, New York, \nNorth Carolina, Oregon, Vermont, \nand Washington \n\
    Avanade \nAware \nBarbara Evans \nBetter Identity Coalition \nBipartisan Policy\
    \ Center \nBrandon L. Garrett and Cynthia \nRudin \nBrian Krupp \nBrooklyn Defender\
    \ Services \nBSA | The Software Alliance \nCarnegie Mellon University \nCenter\
    \ for Democracy & \nTechnology \nCenter for New Democratic \nProcesses \nCenter\
    \ for Research and Education \non Accessible Technology and \nExperiences at University\
    \ of \nWashington, Devva Kasnitz, L Jean \nCamp, Jonathan Lazar, Harry \nHochheiser\
    \ \nCenter on Privacy & Technology at \nGeorgetown Law \nCisco Systems"
  - "even if the inferences are not accurate (e.g., confabulations), and especially\
    \ if they reveal information \nthat the individual considers sensitive or that\
    \ is used to disadvantage or harm them. \nBeyond harms from information exposure\
    \ (such as extortion or dignitary harm), wrong or inappropriate \ninferences of\
    \ PII can contribute to downstream or secondary harmful impacts. For example,\
    \ predictive \ninferences made by GAI models based on PII or protected attributes\
    \ can contribute to adverse decisions, \nleading to representational or allocative\
    \ harms to individuals or groups (see Harmful Bias and \nHomogenization below)."
  - "information in their credit report.\" The CFPB has also asserted that \"[t]he\
    \ law gives every applicant the right to \na specific explanation if their application\
    \ for credit was denied, and that right is not diminished simply because \na company\
    \ uses a complex algorithm that it doesn't understand.\"92 Such explanations illustrate\
    \ a shared value \nthat certain decisions need to be explained. \nA California\
    \ law requires that warehouse employees are provided with notice and explana-\n\
    tion about quotas, potentially facilitated by automated systems, that apply to\
    \ them. Warehous-\ning employers in California that use quota systems (often facilitated\
    \ by algorithmic monitoring systems) are \nrequired to provide employees with\
    \ a written description of each quota that applies to the employee, including\
    \ \n“quantified number of tasks to be performed or materials to be produced or\
    \ handled, within the defined"
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.98
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.98
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333334
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19999999999999996
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09999999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.98
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9913092975357145
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9883333333333333
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9883333333333334
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.98
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 1.0
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 1.0
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 1.0
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.98
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.3333333333333334
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.19999999999999996
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09999999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.98
      name: Dot Recall@1
    - type: dot_recall@3
      value: 1.0
      name: Dot Recall@3
    - type: dot_recall@5
      value: 1.0
      name: Dot Recall@5
    - type: dot_recall@10
      value: 1.0
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.9913092975357145
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.9883333333333333
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.9883333333333334
      name: Dot Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("vincha77/finetuned_arctic")
# Run inference
sentences = [
    'What rights do applicants have if their application for credit is denied according to the CFPB?',
    'information in their credit report." The CFPB has also asserted that "[t]he law gives every applicant the right to \na specific explanation if their application for credit was denied, and that right is not diminished simply because \na company uses a complex algorithm that it doesn\'t understand."92 Such explanations illustrate a shared value \nthat certain decisions need to be explained. \nA California law requires that warehouse employees are provided with notice and explana-\ntion about quotas, potentially facilitated by automated systems, that apply to them. Warehous-\ning employers in California that use quota systems (often facilitated by algorithmic monitoring systems) are \nrequired to provide employees with a written description of each quota that applies to the employee, including \n“quantified number of tasks to be performed or materials to be produced or handled, within the defined',
    'even if the inferences are not accurate (e.g., confabulations), and especially if they reveal information \nthat the individual considers sensitive or that is used to disadvantage or harm them. \nBeyond harms from information exposure (such as extortion or dignitary harm), wrong or inappropriate \ninferences of PII can contribute to downstream or secondary harmful impacts. For example, predictive \ninferences made by GAI models based on PII or protected attributes can contribute to adverse decisions, \nleading to representational or allocative harms to individuals or groups (see Harmful Bias and \nHomogenization below).',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.98       |
| cosine_accuracy@3   | 1.0        |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.98       |
| cosine_precision@3  | 0.3333     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.98       |
| cosine_recall@3     | 1.0        |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@10      | 0.9913     |
| cosine_mrr@10       | 0.9883     |
| **cosine_map@100**  | **0.9883** |
| dot_accuracy@1      | 0.98       |
| dot_accuracy@3      | 1.0        |
| dot_accuracy@5      | 1.0        |
| dot_accuracy@10     | 1.0        |
| dot_precision@1     | 0.98       |
| dot_precision@3     | 0.3333     |
| dot_precision@5     | 0.2        |
| dot_precision@10    | 0.1        |
| dot_recall@1        | 0.98       |
| dot_recall@3        | 1.0        |
| dot_recall@5        | 1.0        |
| dot_recall@10       | 1.0        |
| dot_ndcg@10         | 0.9913     |
| dot_mrr@10          | 0.9883     |
| dot_map@100         | 0.9883     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 600 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 600 samples:
  |         | sentence_0                                                                         | sentence_1                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 12 tokens</li><li>mean: 21.21 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 182.02 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                                                 | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
  |:-------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What are the responsibilities of AI Actors in monitoring reported issues related to GAI system performance?</code>                   | <code>45 <br>MG-4.1-007 <br>Verify that AI Actors responsible for monitoring reported issues can effectively <br>evaluate GAI system performance including the application of content <br>provenance data tracking techniques, and promptly escalate issues for response. <br>Human-AI Configuration; <br>Information Integrity <br>AI Actor Tasks: AI Deployment, Affected Individuals and Communities, Domain Experts, End-Users, Human Factors, Operation and <br>Monitoring <br> <br>MANAGE 4.2: Measurable activities for continual improvements are integrated into AI system updates and include regular <br>engagement with interested parties, including relevant AI Actors. <br>Action ID <br>Suggested Action <br>GAI Risks <br>MG-4.2-001 Conduct regular monitoring of GAI systems and publish reports detailing the <br>performance, feedback received, and improvements made. <br>Harmful Bias and Homogenization <br>MG-4.2-002 <br>Practice and follow incident response plans for addressing the generation of</code> |
  | <code>How are measurable activities for continual improvements integrated into AI system updates according to the context provided?</code> | <code>45 <br>MG-4.1-007 <br>Verify that AI Actors responsible for monitoring reported issues can effectively <br>evaluate GAI system performance including the application of content <br>provenance data tracking techniques, and promptly escalate issues for response. <br>Human-AI Configuration; <br>Information Integrity <br>AI Actor Tasks: AI Deployment, Affected Individuals and Communities, Domain Experts, End-Users, Human Factors, Operation and <br>Monitoring <br> <br>MANAGE 4.2: Measurable activities for continual improvements are integrated into AI system updates and include regular <br>engagement with interested parties, including relevant AI Actors. <br>Action ID <br>Suggested Action <br>GAI Risks <br>MG-4.2-001 Conduct regular monitoring of GAI systems and publish reports detailing the <br>performance, feedback received, and improvements made. <br>Harmful Bias and Homogenization <br>MG-4.2-002 <br>Practice and follow incident response plans for addressing the generation of</code> |
  | <code>What is the main function of the app discussed in Samantha Cole's article from June 26, 2019?</code>                                 | <code>them<br>10. Samantha Cole. This Horrifying App Undresses a Photo of Any Woman With a Single Click. Motherboard.<br>June 26, 2019. https://www.vice.com/en/article/kzm59x/deepnude-app-creates-fake-nudes-of-any-woman<br>11. Lauren Kaori Gurley. Amazon’s AI Cameras Are Punishing Drivers for Mistakes They Didn’t Make.<br>Motherboard. Sep. 20, 2021. https://www.vice.com/en/article/88npjv/amazons-ai-cameras-are-punishing­<br>drivers-for-mistakes-they-didnt-make<br>63</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 1.0    | 38   | 0.965          |
| 1.3158 | 50   | 0.9783         |
| 2.0    | 76   | 0.9767         |
| 2.6316 | 100  | 0.9833         |
| 3.0    | 114  | 0.9883         |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->