---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:26
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'Answer: Users can contact Customer Care before confirmation to
request a refund for offline'
sentences:
- single order?
- a booking?
- MOU?
- source_sentence: The Employee agrees to be employed on the terms and conditions
set out in this Agreement.
sentences:
- What events constitute Force Majeure under this Agreement?
- What are the specific terms and conditions of employment?
- What is the scope of this Agreement?
- source_sentence: The term of this Agreement shall continue until terminated by either
party in accordance with
sentences:
- When does this Agreement terminate?
- What is the term of the Agreement?
- Can the Company make changes to the job title or duties of the Employee?
- source_sentence: The initial job title of the Employee will be Relationship Manager.
The initial job duties the
sentences:
- What remedies are available in case of a material breach of this Agreement?
- What representations and warranties does the Employee make to the Company?
- What are the initial job title and duties of the Employee?
- source_sentence: The Company has employed the Employee to render services as described
herein from the
sentences:
- What rules and policies must the Employee abide by?
- What are the general obligations of the Employee?
- When does the Company employ the Employee?
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("vineet10/new_model_4")
# Run inference
sentences = [
'The Company has employed the Employee to render services as described herein from the',
'When does the Company employ the Employee?',
'What are the general obligations of the Employee?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 26 training samples
* Columns: context
and question
* Approximate statistics based on the first 1000 samples:
| | context | question |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
The Employee agrees to diligently, honestly, and to the best of their abilities, perform all
| What are the general obligations of the Employee?
|
| The Company has employed the Employee to render services as described herein from the
| When does the Company employ the Employee?
|
| Answer: Users can report delays to Customer Care and expect an automatic refund within
| order?
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters