Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false
 
datasets:
  - path: /workspace/axolotl/mathvi/input_output_meta_llama_3_8b_instruct-00000-of-00001.parquet
    type: input_output
dataset_prepared_path:
val_set_size: 0.05
eval_sample_packing: false
output_dir: mathvi/output_model2

sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false

adapter: lora
lora_model_dir: 
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 32
micro_batch_size: 4
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-4

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: 
flash_attention: true
s2_attention:

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 10
eval_table_size:
eval_max_new_tokens: 512
saves_per_epoch: 2
save_total_limit: 20
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

mathvi/output_model2

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3327

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
2.0442 0.0190 1 2.0734
1.449 0.1137 6 1.2774
0.8548 0.2275 12 0.9006
0.8561 0.3412 18 0.7924
0.744 0.4550 24 0.7176
0.6752 0.5687 30 0.6603
0.5908 0.6825 36 0.6117
0.5229 0.7962 42 0.5702
0.558 0.9100 48 0.5281
0.4343 1.0237 54 0.4752
0.4039 1.1374 60 0.4152
0.3744 1.2512 66 0.4225
0.3313 1.3649 72 0.3852
0.374 1.4787 78 0.3740
0.3246 1.5924 84 0.3657
0.3392 1.7062 90 0.3591
0.3309 1.8199 96 0.3505
0.3621 1.9336 102 0.3437
0.2819 2.0474 108 0.3416
0.2672 2.1611 114 0.3414
0.2284 2.2749 120 0.3375
0.2836 2.3886 126 0.3353
0.2504 2.5024 132 0.3337
0.2696 2.6161 138 0.3328
0.2775 2.7299 144 0.3327
0.2554 2.8436 150 0.3325
0.2551 2.9573 156 0.3327

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for vinhnq29/Llama-3-Instruct-LORA

Adapter
(621)
this model