|
|
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from transformers import PreTrainedModel |
|
from transformers.modeling_outputs import ModelOutput |
|
|
|
from modeling_phi import PhiForCausalLM |
|
from configuration_llava import LlavaConfig |
|
from open_clip import create_model |
|
|
|
|
|
@dataclass |
|
class LlavaCausalLMOutputWithPast(ModelOutput): |
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_features: Optional[torch.FloatTensor] = None |
|
|
|
|
|
class LlavaMultiModalProjector(nn.Module): |
|
def __init__(self, config: LlavaConfig): |
|
super().__init__() |
|
|
|
self.linear_1 = nn.Linear( |
|
config.vision_embed_dim, |
|
config.text_config.n_embd * config.projector_tokens_num, |
|
bias=True, |
|
) |
|
self.act = nn.GELU() |
|
self.linear_2 = nn.Linear( |
|
config.text_config.n_embd * config.projector_tokens_num, |
|
config.text_config.n_embd * config.projector_tokens_num, |
|
bias=True, |
|
) |
|
self.projector_tokens_num = config.projector_tokens_num |
|
|
|
def forward(self, image_features): |
|
hidden_states = self.linear_1(image_features) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
hidden_states = hidden_states.reshape( |
|
hidden_states.shape[0], |
|
self.projector_tokens_num, |
|
int(hidden_states.shape[1] / self.projector_tokens_num), |
|
) |
|
return hidden_states |
|
|
|
|
|
class LlavaPreTrainedModel(PreTrainedModel): |
|
config_class = LlavaConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["LlavaVisionAttention"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
def _init_weights(self, module): |
|
return |
|
|
|
@property |
|
def _supports_sdpa(self): |
|
""" |
|
Retrieve language_model's attribute to check whether the model supports |
|
SDPA or not. |
|
""" |
|
return self.language_model._supports_sdpa |
|
|
|
|
|
class LlavaForConditionalGeneration(LlavaPreTrainedModel): |
|
def __init__(self, config: LlavaConfig): |
|
super().__init__(config) |
|
clip_model = create_model(config.vision_tower_name) |
|
self.vision_model = clip_model.visual |
|
|
|
self.multi_modal_projector = LlavaMultiModalProjector(config) |
|
self.vocab_size = config.vocab_size |
|
self.language_model = PhiForCausalLM(config.text_config) |
|
self.pad_token_id = ( |
|
self.config.pad_token_id if self.config.pad_token_id is not None else -1 |
|
) |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
def set_decoder(self, decoder): |
|
self.language_model.transformer = decoder |
|
|
|
def get_decoder(self): |
|
return self.language_model.transformer |
|
|
|
def tie_weights(self): |
|
return self.language_model.tie_weights() |
|
|
|
def resize_token_embeddings( |
|
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None |
|
) -> nn.Embedding: |
|
model_embeds = self.language_model.resize_token_embeddings( |
|
new_num_tokens, pad_to_multiple_of |
|
) |
|
|
|
self.config.text_config.vocab_size = model_embeds.num_embeddings |
|
self.config.vocab_size = model_embeds.num_embeddings |
|
self.vocab_size = model_embeds.num_embeddings |
|
return model_embeds |
|
|
|
def _merge_input_ids_with_image_features( |
|
self, image_features, inputs_embeds, input_ids, attention_mask, position_ids |
|
): |
|
num_images, num_image_patches, embed_dim = image_features.shape |
|
batch_size, sequence_length = input_ids.shape |
|
left_padding = not torch.sum( |
|
input_ids[:, -1] == torch.tensor(self.pad_token_id) |
|
) |
|
|
|
special_image_token_mask = input_ids == self.config.image_token_index |
|
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) |
|
|
|
max_embed_dim = ( |
|
num_special_image_tokens.max() * (num_image_patches - 1) |
|
) + sequence_length |
|
batch_indices, non_image_indices = torch.where( |
|
input_ids != self.config.image_token_index |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
new_token_positions = ( |
|
torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) |
|
- 1 |
|
) |
|
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1] |
|
if left_padding: |
|
new_token_positions += nb_image_pad[:, None] |
|
text_to_overwrite = new_token_positions[batch_indices, non_image_indices] |
|
|
|
|
|
final_embedding = torch.zeros( |
|
batch_size, |
|
max_embed_dim, |
|
embed_dim, |
|
dtype=inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
) |
|
final_attention_mask = torch.zeros( |
|
batch_size, |
|
max_embed_dim, |
|
dtype=attention_mask.dtype, |
|
device=inputs_embeds.device, |
|
) |
|
|
|
|
|
target_device = inputs_embeds.device |
|
batch_indices, non_image_indices, text_to_overwrite = ( |
|
batch_indices.to(target_device), |
|
non_image_indices.to(target_device), |
|
text_to_overwrite.to(target_device), |
|
) |
|
attention_mask = attention_mask.to(target_device) |
|
|
|
|
|
|
|
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[ |
|
batch_indices, non_image_indices |
|
] |
|
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[ |
|
batch_indices, non_image_indices |
|
] |
|
|
|
|
|
image_to_overwrite = torch.all(final_embedding == 0, dim=-1) |
|
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[ |
|
:, None |
|
].to(target_device) |
|
|
|
if image_to_overwrite.sum() != image_features.shape[:-1].numel(): |
|
raise ValueError( |
|
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while" |
|
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation." |
|
) |
|
|
|
final_embedding[image_to_overwrite] = ( |
|
image_features.contiguous().reshape(-1, embed_dim).to(target_device) |
|
) |
|
final_attention_mask |= image_to_overwrite |
|
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_( |
|
(final_attention_mask == 0), 1 |
|
) |
|
return final_embedding, final_attention_mask, position_ids |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
image_features: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, LlavaCausalLMOutputWithPast]: |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
if image_features is not None and input_ids.shape[1] != 1: |
|
( |
|
inputs_embeds, |
|
attention_mask, |
|
position_ids, |
|
) = self._merge_input_ids_with_image_features( |
|
image_features, |
|
inputs_embeds, |
|
input_ids, |
|
attention_mask, |
|
position_ids, |
|
) |
|
|
|
outputs = self.language_model( |
|
input_ids=None, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
logits = outputs[0] |
|
|
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return output |
|
|
|
return LlavaCausalLMOutputWithPast( |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
image_features=image_features, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
attention_mask=None, |
|
image_features=None, |
|
**kwargs, |
|
): |
|
res = self.language_model.prepare_inputs_for_generation(input_ids, past_key_values, attention_mask, **kwargs) |
|
input_ids = res["input_ids"] |
|
past_key_values = res["past_key_values"] |
|
attention_mask = res["attention_mask"] |
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"image_features": image_features, |
|
} |
|
) |
|
return model_inputs |
|
|
|
def _reorder_cache(self, *args, **kwargs): |
|
return self.language_model._reorder_cache(*args, **kwargs) |
|
|