vitorhgomes commited on
Commit
5df689d
1 Parent(s): 3386cda

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1402.87 +/- 65.22
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bc576ffa3c8d60df205f884a59ad63bdfe673dae33693b15fdd419e811435ab
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f13c8848550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f13c88485e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f13c8848670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f13c8848700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f13c8848790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f13c8848820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f13c88488b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f13c8848940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f13c88489d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f13c8848a60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f13c8848af0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f13c8848b80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f13c8841e10>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1676413685440229127,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAZ32z8VCD6/8BQ/PEbd2j9gr+i+rQO/P3/y8b9jJ9K/iOySP+yqaD/9WDs/AXpHvxb4uz+XMoa7LGcQP2NpODxFZqm/EJhKvxjSmr8iiGo/l4nAP+3iJ7/weBe+Sklnv+FADD+cUak+lbkiP4idYr+JrtG9QTc8v9ZfojweuA8/bOasPQsX7r5GWLu+SOk4Px+04b+QuFI/vKjZvYVhjD9DtK8/BGXGPw0kJ780/uw/gi+rPxE8UEC2N529kIY1vhxtDr+TqFE/zow/P+USHj/hQAw/nFGpPtheyb/ymJA/kxx8Ptkvh78VFAK/cjjZPlU9rj6ExxO/vC4wPguiJD+Qdlu/iNAFwN3+aD2d+Ni+5G+JPzvQorxygIC/w5brPjAoAL82uf8/JFhkvrDLVb+5xDC/kRVGvYASKT83t/o+4UAMP5xRqT7YXsm/8piQP34Wyz/XnY6/V3anv1f/nD8qegG/Hmdwv+Qum79fYxC/g7OWPw/snjyc7h++iB9rv+6Hqj9wiCi/sWEOv4mTYL/O0Le/emklPaaF07/ANgy/nFSvP9IxAj/kfUi/pmkPP1ui6b+cUak+lbkiP4idYr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABNRSC3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAChrPPQAAAADExf+/AAAAAFFp8r0AAAAAjeDaPwAAAADnyHC9AAAAAEtj4T8AAAAAHM8KPgAAAACSbvq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIKtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHyt+z0AAAAAeJLdvwAAAAAH6q49AAAAAKFh3T8AAAAALFb8vQAAAAASIQBAAAAAAI9vEb4AAAAAkdjwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkcVzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICgvog9AAAAAHm44L8AAAAALdnkPQAAAADg5Os/AAAAAGTZhz0AAAAAnMb4PwAAAABiRLy8AAAAAOc5+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABWom22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0NsKPgAAAAATf+G/AAAAAKm5Hj0AAAAAtaX4PwAAAAARf0I9AAAAAOmX4z8AAAAApzTZPQAAAAACY/G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqG/KuB+WqMAWyUTegDjAF0lEdArYqSJIlMRHV9lChoBkdAmx1ykbgjyGgHTegDaAhHQK2NvJSR8tx1fZQoaAZHQJwHwS00FbFoB03oA2gIR0CtkE1PnB+GdX2UKGgGR0Ce2KsE7nxKaAdN6ANoCEdArZXAhY/3WXV9lChoBkdAnGFcAaNuL2gHTegDaAhHQK2ZasasIVx1fZQoaAZHQJnvkLCvX9RoB03oA2gIR0CtmzrV4HHFdX2UKGgGR0Cc69K+BYmtaAdN6ANoCEdArZzOhPCVKXV9lChoBkdAnMHfQ8fV7WgHTegDaAhHQK2hyZKFqSJ1fZQoaAZHQJsDRlz2exxoB03oA2gIR0CtpaCDM/yHdX2UKGgGR0Cci5KjzqbCaAdN6ANoCEdAraiBEORT0nV9lChoBkdAnOX/Y8Md92gHTegDaAhHQK2q/CVKPGR1fZQoaAZHQJu6DoLXtjVoB03oA2gIR0Ctsk+IEbHZdX2UKGgGR0Cc+XyGSIP9aAdN6ANoCEdArbYFhsqJ/HV9lChoBkdAnfFPWDpTuWgHTegDaAhHQK23yO4oZyd1fZQoaAZHQJ0BNmwqy4ZoB03oA2gIR0CtuUw84giedX2UKGgGR0Cam3+X7cfvaAdN6ANoCEdArb4X8CPp6nV9lChoBkdAmjLIDDCP62gHTegDaAhHQK3Bybp/wy91fZQoaAZHQJt/fdP+GXZoB03oA2gIR0Ctw5/FzdULdX2UKGgGR0CYfoyGSIP9aAdN6ANoCEdArcVnzDn/1nV9lChoBkdAmja3zYmLL2gHTegDaAhHQK3NZ3WWhRJ1fZQoaAZHQJV3uk0rK/5oB03oA2gIR0Ct0io9kjHGdX2UKGgGR0CXDdh0hePaaAdN6ANoCEdArdP/YpUgjnV9lChoBkdAmuV8clw97mgHTegDaAhHQK3Vi2UjcEh1fZQoaAZHQJranK6nR9hoB03oA2gIR0Ct2oG7jDKpdX2UKGgGR0CcpVxri2lVaAdN6ANoCEdArd5RCY1HfHV9lChoBkdAj69bpNbkfmgHTegDaAhHQK3gMxdIGyJ1fZQoaAZHQJp2gmAskIJoB03oA2gIR0Ct4c9TxXnydX2UKGgGR0CcRlkka/ATaAdN6ANoCEdAreh6eRPoFHV9lChoBkdAmaWq1XvH92gHTegDaAhHQK3umnUlRgt1fZQoaAZHQJr2EjeKsMloB03oA2gIR0Ct8MwTVUdadX2UKGgGR0Cbn6ZUDMePaAdN6ANoCEdArfJtf5ULlXV9lChoBkdAm72mV/tpmGgHTegDaAhHQK33f6LwWnF1fZQoaAZHQJsODb349HNoB03oA2gIR0Ct+zD1XeWOdX2UKGgGR0CX/x56dDpkaAdN6ANoCEdArf0w5ksjFHV9lChoBkdAmILyuU2UCGgHTegDaAhHQK3+r9pAUtZ1fZQoaAZHQJViZGz8gp1oB03oA2gIR0CuA8ftx+8XdX2UKGgGR0CaINYoiLVGaAdN6ANoCEdArgm+3azu4XV9lChoBkdAmXDaiwjdHmgHTegDaAhHQK4M0v/R3Nd1fZQoaAZHQJpj5EmY0EZoB03oA2gIR0CuDyU3wTdtdX2UKGgGR0CKF4r/bTMJaAdN6ANoCEdArhRALG7z1HV9lChoBkdAmS6bM9r432gHTegDaAhHQK4YBoCdSVJ1fZQoaAZHQJsS4C7sfJVoB03oA2gIR0CuGfKZUkv9dX2UKGgGR0Ca9NlHjIaMaAdN6ANoCEdArhuUkdFOPHV9lChoBkdAlhOFruYx+WgHTegDaAhHQK4goQdS2ph1fZQoaAZHQJglBkvsZ51oB03oA2gIR0CuJXbADaGpdX2UKGgGR0Cded+IMz/IaAdN6ANoCEdArihPDWK/EnV9lChoBkdAmvFPHHWBjGgHTegDaAhHQK4q76SDAah1fZQoaAZHQJtG6kZaV2RoB03oA2gIR0CuMUKdYnv2dX2UKGgGR0CajURx95QhaAdN6ANoCEdArjUCcAimmHV9lChoBkdAm8cS2Yv38GgHTegDaAhHQK423nHNorZ1fZQoaAZHQJVGhaRp1zRoB03oA2gIR0CuOHbAtWdVdX2UKGgGR0CEEkQyRB/raAdN6ANoCEdArj1fv+fh/HV9lChoBkdAm7Ch1klNUWgHTegDaAhHQK5BEcvM8ox1fZQoaAZHQJwAmlGgBcRoB03oA2gIR0CuQ3JPykKvdX2UKGgGR0CcJjW9US7HaAdN6ANoCEdArkXp5zHS4XV9lChoBkdAnQApf+jubGgHTegDaAhHQK5NxcxCY1J1fZQoaAZHQJ0vgkY4yXVoB03oA2gIR0CuUYna37UHdX2UKGgGR0CeDlAJ9iMHaAdN6ANoCEdArlNa26TW5HV9lChoBkdAndEWycCo0mgHTegDaAhHQK5U5WmP5pJ1fZQoaAZHQJ2cKDpTuOVoB03oA2gIR0CuWfJfYzzmdX2UKGgGR0Cc6ANe+mFbaAdN6ANoCEdArl2rafzz3HV9lChoBkdAnvSkXYUWVWgHTegDaAhHQK5fhhOxjax1fZQoaAZHQJuWLRa5f+loB03oA2gIR0CuYS1kc0cfdX2UKGgGR0CYBZUMoc7yaAdN6ANoCEdArmjGaYu01XV9lChoBkdAnbs5kXk5qGgHTegDaAhHQK5uDi1iONp1fZQoaAZHQJz8JpztCzFoB03oA2gIR0Cub9r5qM3qdX2UKGgGR0CbxDG/etSyaAdN6ANoCEdArnFp+H8CP3V9lChoBkdAnPkh9Tgl4WgHTegDaAhHQK52URZEDyR1fZQoaAZHQJ1Zma+evp1oB03oA2gIR0CuefUelsP8dX2UKGgGR0CblMmT1TR6aAdN6ANoCEdArnvHueBg/nV9lChoBkdAnHMTA31jAmgHTegDaAhHQK59VS8an751fZQoaAZHQJjIwMSbpeNoB03oA2gIR0Cug38NpdrwdX2UKGgGR0CbE/NKAavSaAdN6ANoCEdAromBTjvNNnV9lChoBkdAm1A1YdQwbmgHTegDaAhHQK6MOrvsqrl1fZQoaAZHQJrI9HBk7OpoB03oA2gIR0CujcZE+gUUdX2UKGgGR0CajLQu27WeaAdN6ANoCEdArpLCpcX3xnV9lChoBkdAmMa3irDIimgHTegDaAhHQK6WietjkMl1fZQoaAZHQJf+XRlYlppoB03oA2gIR0CumGLOiWVvdX2UKGgGR0CSdUaFEiMYaAdN6ANoCEdArpn5usLfDXV9lChoBkdAkt+nhjvuxGgHTegDaAhHQK6fU8lolD51fZQoaAZHQJbkO/gzguRoB03oA2gIR0CupL0F0PpZdX2UKGgGR0CbUiTZxrBTaAdN6ANoCEdArqfa+xnnMnV9lChoBkdAnCjmNm16V2gHTegDaAhHQK6qehIvrW11fZQoaAZHQJitFH9WIXVoB03oA2gIR0Cur488cMmXdX2UKGgGR0Cd7Jm5DqnnaAdN6ANoCEdArrNKX2M85nV9lChoBkdAnLpo4Ia99WgHTegDaAhHQK61ILMLWqd1fZQoaAZHQJkMFNL127poB03oA2gIR0Cutqhz3h4udX2UKGgGR0CbNAW3jMmnaAdN6ANoCEdArrurziCJ43V9lChoBkdAmDQ6slsxf2gHTegDaAhHQK6/8BKcurZ1fZQoaAZHQJoOlJK8L8doB03oA2gIR0CuwrGYBvJjdX2UKGgGR0CZKNHuZ1FIaAdN6ANoCEdArsUrlNlAeXV9lChoBkdAm6Psz2vjfmgHTegDaAhHQK7MNKISDh91fZQoaAZHQJw+brAxi5NoB03oA2gIR0Cu0Bx0MgEEdX2UKGgGR0Ccyd5Dqnm8aAdN6ANoCEdArtIAXdj5K3V9lChoBkdAmXh5aV2RrGgHTegDaAhHQK7TlQgs9Sx1fZQoaAZHQJqWuo2n889oB03oA2gIR0Cu2KprULDydX2UKGgGR0Cco4G3F1jiaAdN6ANoCEdArtxl7tzCDXV9lChoBkdAnTuw2AG0NWgHTegDaAhHQK7eYY1He8B1fZQoaAZHQJ3vOV9nbqRoB03oA2gIR0Cu4Lo91U2ldX2UKGgGR0Cd5yUFjd56aAdN6ANoCEdArujSV8kUsXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8718962ee2bf1b7091f5c6ed591848d1d49aeaf07c193a10df87ddbbe89f2a09
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a84efa68f260af6b135844f270114001ddd8e0744e4949df3e25cb30bb5edd16
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f13c8848550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f13c88485e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f13c8848670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f13c8848700>", "_build": "<function ActorCriticPolicy._build at 0x7f13c8848790>", "forward": "<function ActorCriticPolicy.forward at 0x7f13c8848820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f13c88488b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f13c8848940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f13c88489d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f13c8848a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f13c8848af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f13c8848b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f13c8841e10>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676413685440229127, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAZ32z8VCD6/8BQ/PEbd2j9gr+i+rQO/P3/y8b9jJ9K/iOySP+yqaD/9WDs/AXpHvxb4uz+XMoa7LGcQP2NpODxFZqm/EJhKvxjSmr8iiGo/l4nAP+3iJ7/weBe+Sklnv+FADD+cUak+lbkiP4idYr+JrtG9QTc8v9ZfojweuA8/bOasPQsX7r5GWLu+SOk4Px+04b+QuFI/vKjZvYVhjD9DtK8/BGXGPw0kJ780/uw/gi+rPxE8UEC2N529kIY1vhxtDr+TqFE/zow/P+USHj/hQAw/nFGpPtheyb/ymJA/kxx8Ptkvh78VFAK/cjjZPlU9rj6ExxO/vC4wPguiJD+Qdlu/iNAFwN3+aD2d+Ni+5G+JPzvQorxygIC/w5brPjAoAL82uf8/JFhkvrDLVb+5xDC/kRVGvYASKT83t/o+4UAMP5xRqT7YXsm/8piQP34Wyz/XnY6/V3anv1f/nD8qegG/Hmdwv+Qum79fYxC/g7OWPw/snjyc7h++iB9rv+6Hqj9wiCi/sWEOv4mTYL/O0Le/emklPaaF07/ANgy/nFSvP9IxAj/kfUi/pmkPP1ui6b+cUak+lbkiP4idYr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABNRSC3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAChrPPQAAAADExf+/AAAAAFFp8r0AAAAAjeDaPwAAAADnyHC9AAAAAEtj4T8AAAAAHM8KPgAAAACSbvq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKIKtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHyt+z0AAAAAeJLdvwAAAAAH6q49AAAAAKFh3T8AAAAALFb8vQAAAAASIQBAAAAAAI9vEb4AAAAAkdjwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkcVzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICgvog9AAAAAHm44L8AAAAALdnkPQAAAADg5Os/AAAAAGTZhz0AAAAAnMb4PwAAAABiRLy8AAAAAOc5+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABWom22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0NsKPgAAAAATf+G/AAAAAKm5Hj0AAAAAtaX4PwAAAAARf0I9AAAAAOmX4z8AAAAApzTZPQAAAAACY/G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqG/KuB+WqMAWyUTegDjAF0lEdArYqSJIlMRHV9lChoBkdAmx1ykbgjyGgHTegDaAhHQK2NvJSR8tx1fZQoaAZHQJwHwS00FbFoB03oA2gIR0CtkE1PnB+GdX2UKGgGR0Ce2KsE7nxKaAdN6ANoCEdArZXAhY/3WXV9lChoBkdAnGFcAaNuL2gHTegDaAhHQK2ZasasIVx1fZQoaAZHQJnvkLCvX9RoB03oA2gIR0CtmzrV4HHFdX2UKGgGR0Cc69K+BYmtaAdN6ANoCEdArZzOhPCVKXV9lChoBkdAnMHfQ8fV7WgHTegDaAhHQK2hyZKFqSJ1fZQoaAZHQJsDRlz2exxoB03oA2gIR0CtpaCDM/yHdX2UKGgGR0Cci5KjzqbCaAdN6ANoCEdAraiBEORT0nV9lChoBkdAnOX/Y8Md92gHTegDaAhHQK2q/CVKPGR1fZQoaAZHQJu6DoLXtjVoB03oA2gIR0Ctsk+IEbHZdX2UKGgGR0Cc+XyGSIP9aAdN6ANoCEdArbYFhsqJ/HV9lChoBkdAnfFPWDpTuWgHTegDaAhHQK23yO4oZyd1fZQoaAZHQJ0BNmwqy4ZoB03oA2gIR0CtuUw84giedX2UKGgGR0Cam3+X7cfvaAdN6ANoCEdArb4X8CPp6nV9lChoBkdAmjLIDDCP62gHTegDaAhHQK3Bybp/wy91fZQoaAZHQJt/fdP+GXZoB03oA2gIR0Ctw5/FzdULdX2UKGgGR0CYfoyGSIP9aAdN6ANoCEdArcVnzDn/1nV9lChoBkdAmja3zYmLL2gHTegDaAhHQK3NZ3WWhRJ1fZQoaAZHQJV3uk0rK/5oB03oA2gIR0Ct0io9kjHGdX2UKGgGR0CXDdh0hePaaAdN6ANoCEdArdP/YpUgjnV9lChoBkdAmuV8clw97mgHTegDaAhHQK3Vi2UjcEh1fZQoaAZHQJranK6nR9hoB03oA2gIR0Ct2oG7jDKpdX2UKGgGR0CcpVxri2lVaAdN6ANoCEdArd5RCY1HfHV9lChoBkdAj69bpNbkfmgHTegDaAhHQK3gMxdIGyJ1fZQoaAZHQJp2gmAskIJoB03oA2gIR0Ct4c9TxXnydX2UKGgGR0CcRlkka/ATaAdN6ANoCEdAreh6eRPoFHV9lChoBkdAmaWq1XvH92gHTegDaAhHQK3umnUlRgt1fZQoaAZHQJr2EjeKsMloB03oA2gIR0Ct8MwTVUdadX2UKGgGR0Cbn6ZUDMePaAdN6ANoCEdArfJtf5ULlXV9lChoBkdAm72mV/tpmGgHTegDaAhHQK33f6LwWnF1fZQoaAZHQJsODb349HNoB03oA2gIR0Ct+zD1XeWOdX2UKGgGR0CX/x56dDpkaAdN6ANoCEdArf0w5ksjFHV9lChoBkdAmILyuU2UCGgHTegDaAhHQK3+r9pAUtZ1fZQoaAZHQJViZGz8gp1oB03oA2gIR0CuA8ftx+8XdX2UKGgGR0CaINYoiLVGaAdN6ANoCEdArgm+3azu4XV9lChoBkdAmXDaiwjdHmgHTegDaAhHQK4M0v/R3Nd1fZQoaAZHQJpj5EmY0EZoB03oA2gIR0CuDyU3wTdtdX2UKGgGR0CKF4r/bTMJaAdN6ANoCEdArhRALG7z1HV9lChoBkdAmS6bM9r432gHTegDaAhHQK4YBoCdSVJ1fZQoaAZHQJsS4C7sfJVoB03oA2gIR0CuGfKZUkv9dX2UKGgGR0Ca9NlHjIaMaAdN6ANoCEdArhuUkdFOPHV9lChoBkdAlhOFruYx+WgHTegDaAhHQK4goQdS2ph1fZQoaAZHQJglBkvsZ51oB03oA2gIR0CuJXbADaGpdX2UKGgGR0Cded+IMz/IaAdN6ANoCEdArihPDWK/EnV9lChoBkdAmvFPHHWBjGgHTegDaAhHQK4q76SDAah1fZQoaAZHQJtG6kZaV2RoB03oA2gIR0CuMUKdYnv2dX2UKGgGR0CajURx95QhaAdN6ANoCEdArjUCcAimmHV9lChoBkdAm8cS2Yv38GgHTegDaAhHQK423nHNorZ1fZQoaAZHQJVGhaRp1zRoB03oA2gIR0CuOHbAtWdVdX2UKGgGR0CEEkQyRB/raAdN6ANoCEdArj1fv+fh/HV9lChoBkdAm7Ch1klNUWgHTegDaAhHQK5BEcvM8ox1fZQoaAZHQJwAmlGgBcRoB03oA2gIR0CuQ3JPykKvdX2UKGgGR0CcJjW9US7HaAdN6ANoCEdArkXp5zHS4XV9lChoBkdAnQApf+jubGgHTegDaAhHQK5NxcxCY1J1fZQoaAZHQJ0vgkY4yXVoB03oA2gIR0CuUYna37UHdX2UKGgGR0CeDlAJ9iMHaAdN6ANoCEdArlNa26TW5HV9lChoBkdAndEWycCo0mgHTegDaAhHQK5U5WmP5pJ1fZQoaAZHQJ2cKDpTuOVoB03oA2gIR0CuWfJfYzzmdX2UKGgGR0Cc6ANe+mFbaAdN6ANoCEdArl2rafzz3HV9lChoBkdAnvSkXYUWVWgHTegDaAhHQK5fhhOxjax1fZQoaAZHQJuWLRa5f+loB03oA2gIR0CuYS1kc0cfdX2UKGgGR0CYBZUMoc7yaAdN6ANoCEdArmjGaYu01XV9lChoBkdAnbs5kXk5qGgHTegDaAhHQK5uDi1iONp1fZQoaAZHQJz8JpztCzFoB03oA2gIR0Cub9r5qM3qdX2UKGgGR0CbxDG/etSyaAdN6ANoCEdArnFp+H8CP3V9lChoBkdAnPkh9Tgl4WgHTegDaAhHQK52URZEDyR1fZQoaAZHQJ1Zma+evp1oB03oA2gIR0CuefUelsP8dX2UKGgGR0CblMmT1TR6aAdN6ANoCEdArnvHueBg/nV9lChoBkdAnHMTA31jAmgHTegDaAhHQK59VS8an751fZQoaAZHQJjIwMSbpeNoB03oA2gIR0Cug38NpdrwdX2UKGgGR0CbE/NKAavSaAdN6ANoCEdAromBTjvNNnV9lChoBkdAm1A1YdQwbmgHTegDaAhHQK6MOrvsqrl1fZQoaAZHQJrI9HBk7OpoB03oA2gIR0CujcZE+gUUdX2UKGgGR0CajLQu27WeaAdN6ANoCEdArpLCpcX3xnV9lChoBkdAmMa3irDIimgHTegDaAhHQK6WietjkMl1fZQoaAZHQJf+XRlYlppoB03oA2gIR0CumGLOiWVvdX2UKGgGR0CSdUaFEiMYaAdN6ANoCEdArpn5usLfDXV9lChoBkdAkt+nhjvuxGgHTegDaAhHQK6fU8lolD51fZQoaAZHQJbkO/gzguRoB03oA2gIR0CupL0F0PpZdX2UKGgGR0CbUiTZxrBTaAdN6ANoCEdArqfa+xnnMnV9lChoBkdAnCjmNm16V2gHTegDaAhHQK6qehIvrW11fZQoaAZHQJitFH9WIXVoB03oA2gIR0Cur488cMmXdX2UKGgGR0Cd7Jm5DqnnaAdN6ANoCEdArrNKX2M85nV9lChoBkdAnLpo4Ia99WgHTegDaAhHQK61ILMLWqd1fZQoaAZHQJkMFNL127poB03oA2gIR0Cutqhz3h4udX2UKGgGR0CbNAW3jMmnaAdN6ANoCEdArrurziCJ43V9lChoBkdAmDQ6slsxf2gHTegDaAhHQK6/8BKcurZ1fZQoaAZHQJoOlJK8L8doB03oA2gIR0CuwrGYBvJjdX2UKGgGR0CZKNHuZ1FIaAdN6ANoCEdArsUrlNlAeXV9lChoBkdAm6Psz2vjfmgHTegDaAhHQK7MNKISDh91fZQoaAZHQJw+brAxi5NoB03oA2gIR0Cu0Bx0MgEEdX2UKGgGR0Ccyd5Dqnm8aAdN6ANoCEdArtIAXdj5K3V9lChoBkdAmXh5aV2RrGgHTegDaAhHQK7TlQgs9Sx1fZQoaAZHQJqWuo2n889oB03oA2gIR0Cu2KprULDydX2UKGgGR0Cco4G3F1jiaAdN6ANoCEdArtxl7tzCDXV9lChoBkdAnTuw2AG0NWgHTegDaAhHQK7eYY1He8B1fZQoaAZHQJ3vOV9nbqRoB03oA2gIR0Cu4Lo91U2ldX2UKGgGR0Cd5yUFjd56aAdN6ANoCEdArujSV8kUsXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9e790943d6c815c1039cfdda0a643a3703235aedda8fd9e4d46786b628c6c50
3
+ size 1192679
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1402.869517897215, "std_reward": 65.22335615674939, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-14T23:32:21.977238"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eeac0a5ea2c5dc6305bab1b6ca0669cbd7e870fbc3eec719c6a1f3df4611d281
3
+ size 2136