update readme for 2 step trainings
Browse files- README.md +14 -3
- README_inital_step.md +76 -0
- config.json +1 -1
- inference.ipynb +22 -48
- pytorch_model.bin +1 -1
- train_kh.ipynb +184 -550
- training_args.bin +1 -1
README.md
CHANGED
@@ -20,8 +20,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the openslr dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Wer: 0.
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -48,7 +48,7 @@ The following hyperparameters were used during training:
|
|
48 |
- total_train_batch_size: 32
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- lr_scheduler_warmup_steps:
|
52 |
- num_epochs: 50
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
@@ -66,6 +66,17 @@ The following hyperparameters were used during training:
|
|
66 |
| 1.4696 | 39.5 | 3200 | 0.5002 | 0.5130 |
|
67 |
| 1.4175 | 44.44 | 3600 | 0.4752 | 0.5021 |
|
68 |
| 1.3943 | 49.38 | 4000 | 0.4638 | 0.4944 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the openslr dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3142
|
24 |
+
- Wer: 0.3512
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
48 |
- total_train_batch_size: 32
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_steps: 100
|
52 |
- num_epochs: 50
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
|
|
66 |
| 1.4696 | 39.5 | 3200 | 0.5002 | 0.5130 |
|
67 |
| 1.4175 | 44.44 | 3600 | 0.4752 | 0.5021 |
|
68 |
| 1.3943 | 49.38 | 4000 | 0.4638 | 0.4944 |
|
69 |
+
| Pause and Resume | | | | |
|
70 |
+
| 1.3829 | 4.93 | 400 | 0.4290 | 0.4796 |
|
71 |
+
| 1.3156 | 9.87 | 800 | 0.3856 | 0.4474 |
|
72 |
+
| 1.2396 | 14.81 | 1200 | 0.3600 | 0.4307 |
|
73 |
+
| 1.1444 | 19.75 | 1600 | 0.3423 | 0.4179 |
|
74 |
+
| 1.0979 | 24.69 | 2000 | 0.3370 | 0.3884 |
|
75 |
+
| 1.0714 | 29.62 | 2400 | 0.3237 | 0.3710 |
|
76 |
+
| 1.0442 | 34.56 | 2800 | 0.3336 | 0.3683 |
|
77 |
+
| 1.0492 | 39.5 | 3200 | 0.3166 | 0.3527 |
|
78 |
+
| 1.0284 | 44.44 | 3600 | 0.3178 | 0.3566 |
|
79 |
+
| 1.0302 | 49.38 | 4000 | 0.3142 | 0.3512 |
|
80 |
|
81 |
|
82 |
### Framework versions
|
README_inital_step.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- km
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- openslr
|
8 |
+
- robust-speech-event
|
9 |
+
- km
|
10 |
+
- generated_from_trainer
|
11 |
+
model-index:
|
12 |
+
- name: ''
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
#
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the openslr dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.4638
|
24 |
+
- Wer: 0.4944
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 8
|
45 |
+
- eval_batch_size: 8
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 4
|
48 |
+
- total_train_batch_size: 32
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_steps: 1000
|
52 |
+
- num_epochs: 50
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
59 |
+
| 5.2049 | 4.93 | 400 | 4.5570 | 1.0 |
|
60 |
+
| 3.569 | 9.87 | 800 | 3.5415 | 1.0 |
|
61 |
+
| 3.483 | 14.81 | 1200 | 3.3956 | 1.0 |
|
62 |
+
| 2.1906 | 19.75 | 1600 | 1.1732 | 0.7897 |
|
63 |
+
| 1.7968 | 24.69 | 2000 | 0.7634 | 0.6678 |
|
64 |
+
| 1.615 | 29.62 | 2400 | 0.6182 | 0.5922 |
|
65 |
+
| 1.52 | 34.56 | 2800 | 0.5473 | 0.5479 |
|
66 |
+
| 1.4696 | 39.5 | 3200 | 0.5002 | 0.5130 |
|
67 |
+
| 1.4175 | 44.44 | 3600 | 0.4752 | 0.5021 |
|
68 |
+
| 1.3943 | 49.38 | 4000 | 0.4638 | 0.4944 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.17.0.dev0
|
74 |
+
- Pytorch 1.10.2+cu102
|
75 |
+
- Datasets 1.18.2.dev0
|
76 |
+
- Tokenizers 0.11.0
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"activation_dropout": 0.0,
|
4 |
"adapter_kernel_size": 3,
|
5 |
"adapter_stride": 2,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "checkpoint-4000",
|
3 |
"activation_dropout": 0.0,
|
4 |
"adapter_kernel_size": 3,
|
5 |
"adapter_stride": 2,
|
inference.ipynb
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
"execution_count": 1,
|
6 |
-
"id": "
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
@@ -16,46 +16,20 @@
|
|
16 |
{
|
17 |
"cell_type": "code",
|
18 |
"execution_count": 5,
|
19 |
-
"id": "
|
20 |
"metadata": {},
|
21 |
"outputs": [],
|
22 |
"source": [
|
23 |
-
"model = AutoModelForCTC.from_pretrained(\".\").to('cuda')\n",
|
24 |
-
"processor = Wav2Vec2Processor.from_pretrained(\".\")"
|
25 |
]
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
-
"execution_count":
|
30 |
-
"id": "
|
31 |
-
"metadata": {
|
32 |
-
|
33 |
-
"jupyter": {
|
34 |
-
"outputs_hidden": true
|
35 |
-
}
|
36 |
-
},
|
37 |
-
"outputs": [
|
38 |
-
{
|
39 |
-
"ename": "JSONDecodeError",
|
40 |
-
"evalue": "Expecting value: line 1 column 1 (char 0)",
|
41 |
-
"output_type": "error",
|
42 |
-
"traceback": [
|
43 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
44 |
-
"\u001b[0;31mJSONDecodeError\u001b[0m Traceback (most recent call last)",
|
45 |
-
"Input \u001b[0;32mIn [3]\u001b[0m, in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m model \u001b[38;5;241m=\u001b[39m AutoModelForCTC\u001b[38;5;241m.\u001b[39mfrom_pretrained(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mvitouphy/xls-r-300m-km\u001b[39m\u001b[38;5;124m\"\u001b[39m)\u001b[38;5;241m.\u001b[39mto(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcuda\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m----> 2\u001b[0m processor \u001b[38;5;241m=\u001b[39m \u001b[43mWav2Vec2Processor\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mvitouphy/xls-r-300m-km\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
46 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py:117\u001b[0m, in \u001b[0;36mWav2Vec2Processor.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[38;5;66;03m# load generic `AutoTokenizer`\u001b[39;00m\n\u001b[1;32m 113\u001b[0m \u001b[38;5;66;03m# need fallback here for backward compatibility in case processor is\u001b[39;00m\n\u001b[1;32m 114\u001b[0m \u001b[38;5;66;03m# loaded from just a tokenizer file that does not have a `tokenizer_class` attribute\u001b[39;00m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;66;03m# behavior should be deprecated in major future release\u001b[39;00m\n\u001b[1;32m 116\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 117\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m \u001b[43mAutoTokenizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpretrained_model_name_or_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 118\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m:\n\u001b[1;32m 119\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[1;32m 120\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLoading a tokenizer inside \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m from a config that does not\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 121\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m include a `tokenizer_class` attribute is deprecated and will be \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[38;5;167;01mFutureWarning\u001b[39;00m,\n\u001b[1;32m 126\u001b[0m )\n",
|
47 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/models/auto/tokenization_auto.py:514\u001b[0m, in \u001b[0;36mAutoTokenizer.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *inputs, **kwargs)\u001b[0m\n\u001b[1;32m 510\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tokenizer_class \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 511\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 512\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTokenizer class \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtokenizer_class_candidate\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m does not exist or is not currently imported.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 513\u001b[0m )\n\u001b[0;32m--> 514\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mtokenizer_class\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpretrained_model_name_or_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 516\u001b[0m \u001b[38;5;66;03m# Otherwise we have to be creative.\u001b[39;00m\n\u001b[1;32m 517\u001b[0m \u001b[38;5;66;03m# if model is an encoder decoder, the encoder tokenizer class is used by default\u001b[39;00m\n\u001b[1;32m 518\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(config, EncoderDecoderConfig):\n",
|
48 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/tokenization_utils_base.py:1773\u001b[0m, in \u001b[0;36mPreTrainedTokenizerBase.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *init_inputs, **kwargs)\u001b[0m\n\u001b[1;32m 1770\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1771\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mloading file \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfile_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m from cache at \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresolved_vocab_files[file_id]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 1773\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_from_pretrained\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1774\u001b[0m \u001b[43m \u001b[49m\u001b[43mresolved_vocab_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1775\u001b[0m \u001b[43m \u001b[49m\u001b[43mpretrained_model_name_or_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1776\u001b[0m \u001b[43m \u001b[49m\u001b[43minit_configuration\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1777\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minit_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1778\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_auth_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_auth_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1779\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1780\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1781\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
49 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/tokenization_utils_base.py:1908\u001b[0m, in \u001b[0;36mPreTrainedTokenizerBase._from_pretrained\u001b[0;34m(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, use_auth_token, cache_dir, *init_inputs, **kwargs)\u001b[0m\n\u001b[1;32m 1906\u001b[0m \u001b[38;5;66;03m# Instantiate tokenizer.\u001b[39;00m\n\u001b[1;32m 1907\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1908\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minit_inputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minit_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1909\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m:\n\u001b[1;32m 1910\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m(\n\u001b[1;32m 1911\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUnable to load vocabulary from file. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1912\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPlease check that the provided vocabulary is accessible and not corrupted.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1913\u001b[0m )\n",
|
50 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/models/wav2vec2/tokenization_wav2vec2.py:142\u001b[0m, in \u001b[0;36mWav2Vec2CTCTokenizer.__init__\u001b[0;34m(self, vocab_file, bos_token, eos_token, unk_token, pad_token, word_delimiter_token, do_lower_case, **kwargs)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdo_lower_case \u001b[38;5;241m=\u001b[39m do_lower_case\n\u001b[1;32m 141\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mopen\u001b[39m(vocab_file, encoding\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mutf-8\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mas\u001b[39;00m vocab_handle:\n\u001b[0;32m--> 142\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mencoder \u001b[38;5;241m=\u001b[39m \u001b[43mjson\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvocab_handle\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 143\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdecoder \u001b[38;5;241m=\u001b[39m {v: k \u001b[38;5;28;01mfor\u001b[39;00m k, v \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mencoder\u001b[38;5;241m.\u001b[39mitems()}\n\u001b[1;32m 145\u001b[0m \u001b[38;5;66;03m# make sure that tokens made of several\u001b[39;00m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;66;03m# characters are not split at tokenization\u001b[39;00m\n",
|
51 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/json/__init__.py:293\u001b[0m, in \u001b[0;36mload\u001b[0;34m(fp, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)\u001b[0m\n\u001b[1;32m 274\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mload\u001b[39m(fp, \u001b[38;5;241m*\u001b[39m, \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, object_hook\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, parse_float\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 275\u001b[0m parse_int\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, parse_constant\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, object_pairs_hook\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkw):\n\u001b[1;32m 276\u001b[0m \u001b[38;5;124;03m\"\"\"Deserialize ``fp`` (a ``.read()``-supporting file-like object containing\u001b[39;00m\n\u001b[1;32m 277\u001b[0m \u001b[38;5;124;03m a JSON document) to a Python object.\u001b[39;00m\n\u001b[1;32m 278\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 291\u001b[0m \u001b[38;5;124;03m kwarg; otherwise ``JSONDecoder`` is used.\u001b[39;00m\n\u001b[1;32m 292\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 293\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mloads\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 294\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mobject_hook\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mobject_hook\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 295\u001b[0m \u001b[43m \u001b[49m\u001b[43mparse_float\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparse_float\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparse_int\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparse_int\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 296\u001b[0m \u001b[43m \u001b[49m\u001b[43mparse_constant\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparse_constant\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mobject_pairs_hook\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mobject_pairs_hook\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkw\u001b[49m\u001b[43m)\u001b[49m\n",
|
52 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/json/__init__.py:357\u001b[0m, in \u001b[0;36mloads\u001b[0;34m(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)\u001b[0m\n\u001b[1;32m 352\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m kw[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mencoding\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[1;32m 354\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\u001b[38;5;28mcls\u001b[39m \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m object_hook \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m\n\u001b[1;32m 355\u001b[0m parse_int \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m parse_float \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m\n\u001b[1;32m 356\u001b[0m parse_constant \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m object_pairs_hook \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m kw):\n\u001b[0;32m--> 357\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_default_decoder\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdecode\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 358\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mcls\u001b[39m \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 359\u001b[0m \u001b[38;5;28mcls\u001b[39m \u001b[38;5;241m=\u001b[39m JSONDecoder\n",
|
53 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/json/decoder.py:337\u001b[0m, in \u001b[0;36mJSONDecoder.decode\u001b[0;34m(self, s, _w)\u001b[0m\n\u001b[1;32m 332\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdecode\u001b[39m(\u001b[38;5;28mself\u001b[39m, s, _w\u001b[38;5;241m=\u001b[39mWHITESPACE\u001b[38;5;241m.\u001b[39mmatch):\n\u001b[1;32m 333\u001b[0m \u001b[38;5;124;03m\"\"\"Return the Python representation of ``s`` (a ``str`` instance\u001b[39;00m\n\u001b[1;32m 334\u001b[0m \u001b[38;5;124;03m containing a JSON document).\u001b[39;00m\n\u001b[1;32m 335\u001b[0m \n\u001b[1;32m 336\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 337\u001b[0m obj, end \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraw_decode\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_w\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mend\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 338\u001b[0m end \u001b[38;5;241m=\u001b[39m _w(s, end)\u001b[38;5;241m.\u001b[39mend()\n\u001b[1;32m 339\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m end \u001b[38;5;241m!=\u001b[39m \u001b[38;5;28mlen\u001b[39m(s):\n",
|
54 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/json/decoder.py:355\u001b[0m, in \u001b[0;36mJSONDecoder.raw_decode\u001b[0;34m(self, s, idx)\u001b[0m\n\u001b[1;32m 353\u001b[0m obj, end \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscan_once(s, idx)\n\u001b[1;32m 354\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n\u001b[0;32m--> 355\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m JSONDecodeError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExpecting value\u001b[39m\u001b[38;5;124m\"\u001b[39m, s, err\u001b[38;5;241m.\u001b[39mvalue) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28mNone\u001b[39m\n\u001b[1;32m 356\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m obj, end\n",
|
55 |
-
"\u001b[0;31mJSONDecodeError\u001b[0m: Expecting value: line 1 column 1 (char 0)"
|
56 |
-
]
|
57 |
-
}
|
58 |
-
],
|
59 |
"source": [
|
60 |
"model = AutoModelForCTC.from_pretrained(\"vitouphy/xls-r-300m-km\").to('cuda')\n",
|
61 |
"processor = Wav2Vec2Processor.from_pretrained(\"vitouphy/xls-r-300m-km\")"
|
@@ -64,7 +38,7 @@
|
|
64 |
{
|
65 |
"cell_type": "code",
|
66 |
"execution_count": 8,
|
67 |
-
"id": "
|
68 |
"metadata": {},
|
69 |
"outputs": [
|
70 |
{
|
@@ -83,7 +57,7 @@
|
|
83 |
{
|
84 |
"cell_type": "code",
|
85 |
"execution_count": 9,
|
86 |
-
"id": "
|
87 |
"metadata": {},
|
88 |
"outputs": [],
|
89 |
"source": [
|
@@ -95,7 +69,7 @@
|
|
95 |
{
|
96 |
"cell_type": "code",
|
97 |
"execution_count": 10,
|
98 |
-
"id": "
|
99 |
"metadata": {},
|
100 |
"outputs": [],
|
101 |
"source": [
|
@@ -105,7 +79,7 @@
|
|
105 |
{
|
106 |
"cell_type": "code",
|
107 |
"execution_count": 11,
|
108 |
-
"id": "
|
109 |
"metadata": {},
|
110 |
"outputs": [
|
111 |
{
|
@@ -130,7 +104,7 @@
|
|
130 |
{
|
131 |
"cell_type": "code",
|
132 |
"execution_count": 12,
|
133 |
-
"id": "
|
134 |
"metadata": {},
|
135 |
"outputs": [],
|
136 |
"source": [
|
@@ -149,7 +123,7 @@
|
|
149 |
{
|
150 |
"cell_type": "code",
|
151 |
"execution_count": 13,
|
152 |
-
"id": "
|
153 |
"metadata": {},
|
154 |
"outputs": [
|
155 |
{
|
@@ -173,8 +147,8 @@
|
|
173 |
},
|
174 |
{
|
175 |
"cell_type": "code",
|
176 |
-
"execution_count":
|
177 |
-
"id": "
|
178 |
"metadata": {},
|
179 |
"outputs": [],
|
180 |
"source": [
|
@@ -183,8 +157,8 @@
|
|
183 |
},
|
184 |
{
|
185 |
"cell_type": "code",
|
186 |
-
"execution_count":
|
187 |
-
"id": "
|
188 |
"metadata": {},
|
189 |
"outputs": [
|
190 |
{
|
@@ -203,8 +177,8 @@
|
|
203 |
},
|
204 |
{
|
205 |
"cell_type": "code",
|
206 |
-
"execution_count":
|
207 |
-
"id": "
|
208 |
"metadata": {},
|
209 |
"outputs": [
|
210 |
{
|
@@ -232,7 +206,7 @@
|
|
232 |
{
|
233 |
"cell_type": "code",
|
234 |
"execution_count": null,
|
235 |
-
"id": "
|
236 |
"metadata": {},
|
237 |
"outputs": [],
|
238 |
"source": []
|
@@ -240,7 +214,7 @@
|
|
240 |
{
|
241 |
"cell_type": "code",
|
242 |
"execution_count": null,
|
243 |
-
"id": "
|
244 |
"metadata": {},
|
245 |
"outputs": [],
|
246 |
"source": []
|
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
"execution_count": 1,
|
6 |
+
"id": "310fea8f",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
|
|
16 |
{
|
17 |
"cell_type": "code",
|
18 |
"execution_count": 5,
|
19 |
+
"id": "555c8316",
|
20 |
"metadata": {},
|
21 |
"outputs": [],
|
22 |
"source": [
|
23 |
+
"# model = AutoModelForCTC.from_pretrained(\".\").to('cuda')\n",
|
24 |
+
"# processor = Wav2Vec2Processor.from_pretrained(\".\")"
|
25 |
]
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
+
"execution_count": 20,
|
30 |
+
"id": "24cc91e8",
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
"source": [
|
34 |
"model = AutoModelForCTC.from_pretrained(\"vitouphy/xls-r-300m-km\").to('cuda')\n",
|
35 |
"processor = Wav2Vec2Processor.from_pretrained(\"vitouphy/xls-r-300m-km\")"
|
|
|
38 |
{
|
39 |
"cell_type": "code",
|
40 |
"execution_count": 8,
|
41 |
+
"id": "69d79b00",
|
42 |
"metadata": {},
|
43 |
"outputs": [
|
44 |
{
|
|
|
57 |
{
|
58 |
"cell_type": "code",
|
59 |
"execution_count": 9,
|
60 |
+
"id": "9c9a59b3",
|
61 |
"metadata": {},
|
62 |
"outputs": [],
|
63 |
"source": [
|
|
|
69 |
{
|
70 |
"cell_type": "code",
|
71 |
"execution_count": 10,
|
72 |
+
"id": "868afb48",
|
73 |
"metadata": {},
|
74 |
"outputs": [],
|
75 |
"source": [
|
|
|
79 |
{
|
80 |
"cell_type": "code",
|
81 |
"execution_count": 11,
|
82 |
+
"id": "f93e7f2a",
|
83 |
"metadata": {},
|
84 |
"outputs": [
|
85 |
{
|
|
|
104 |
{
|
105 |
"cell_type": "code",
|
106 |
"execution_count": 12,
|
107 |
+
"id": "c97bf6c8",
|
108 |
"metadata": {},
|
109 |
"outputs": [],
|
110 |
"source": [
|
|
|
123 |
{
|
124 |
"cell_type": "code",
|
125 |
"execution_count": 13,
|
126 |
+
"id": "8e6b77e3",
|
127 |
"metadata": {},
|
128 |
"outputs": [
|
129 |
{
|
|
|
147 |
},
|
148 |
{
|
149 |
"cell_type": "code",
|
150 |
+
"execution_count": 21,
|
151 |
+
"id": "53b5be56",
|
152 |
"metadata": {},
|
153 |
"outputs": [],
|
154 |
"source": [
|
|
|
157 |
},
|
158 |
{
|
159 |
"cell_type": "code",
|
160 |
+
"execution_count": 22,
|
161 |
+
"id": "15dda9d3",
|
162 |
"metadata": {},
|
163 |
"outputs": [
|
164 |
{
|
|
|
177 |
},
|
178 |
{
|
179 |
"cell_type": "code",
|
180 |
+
"execution_count": 23,
|
181 |
+
"id": "bc40d9dc",
|
182 |
"metadata": {},
|
183 |
"outputs": [
|
184 |
{
|
|
|
206 |
{
|
207 |
"cell_type": "code",
|
208 |
"execution_count": null,
|
209 |
+
"id": "f755f572",
|
210 |
"metadata": {},
|
211 |
"outputs": [],
|
212 |
"source": []
|
|
|
214 |
{
|
215 |
"cell_type": "code",
|
216 |
"execution_count": null,
|
217 |
+
"id": "16aa56dc",
|
218 |
"metadata": {},
|
219 |
"outputs": [],
|
220 |
"source": []
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1262231153
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b254f3cb4af80138f33d06456c61d7e3730f18b51646fbede34871daeafcc7e
|
3 |
size 1262231153
|
train_kh.ipynb
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
"execution_count": 1,
|
6 |
-
"id": "
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
@@ -16,7 +16,7 @@
|
|
16 |
{
|
17 |
"cell_type": "code",
|
18 |
"execution_count": null,
|
19 |
-
"id": "
|
20 |
"metadata": {
|
21 |
"collapsed": true,
|
22 |
"jupyter": {
|
@@ -19167,7 +19167,7 @@
|
|
19167 |
},
|
19168 |
{
|
19169 |
"cell_type": "markdown",
|
19170 |
-
"id": "
|
19171 |
"metadata": {},
|
19172 |
"source": [
|
19173 |
"### Load KH Data"
|
@@ -19176,7 +19176,7 @@
|
|
19176 |
{
|
19177 |
"cell_type": "code",
|
19178 |
"execution_count": 4,
|
19179 |
-
"id": "
|
19180 |
"metadata": {},
|
19181 |
"outputs": [],
|
19182 |
"source": [
|
@@ -19197,7 +19197,7 @@
|
|
19197 |
{
|
19198 |
"cell_type": "code",
|
19199 |
"execution_count": 5,
|
19200 |
-
"id": "
|
19201 |
"metadata": {},
|
19202 |
"outputs": [
|
19203 |
{
|
@@ -19307,7 +19307,7 @@
|
|
19307 |
{
|
19308 |
"cell_type": "code",
|
19309 |
"execution_count": 6,
|
19310 |
-
"id": "
|
19311 |
"metadata": {},
|
19312 |
"outputs": [],
|
19313 |
"source": [
|
@@ -19321,7 +19321,7 @@
|
|
19321 |
},
|
19322 |
{
|
19323 |
"cell_type": "markdown",
|
19324 |
-
"id": "
|
19325 |
"metadata": {},
|
19326 |
"source": [
|
19327 |
"### Clean Up the Text"
|
@@ -19330,7 +19330,7 @@
|
|
19330 |
{
|
19331 |
"cell_type": "code",
|
19332 |
"execution_count": 6,
|
19333 |
-
"id": "
|
19334 |
"metadata": {},
|
19335 |
"outputs": [],
|
19336 |
"source": [
|
@@ -19346,7 +19346,7 @@
|
|
19346 |
{
|
19347 |
"cell_type": "code",
|
19348 |
"execution_count": 7,
|
19349 |
-
"id": "
|
19350 |
"metadata": {
|
19351 |
"collapsed": true,
|
19352 |
"jupyter": {
|
@@ -19402,7 +19402,7 @@
|
|
19402 |
{
|
19403 |
"cell_type": "code",
|
19404 |
"execution_count": 7,
|
19405 |
-
"id": "
|
19406 |
"metadata": {},
|
19407 |
"outputs": [
|
19408 |
{
|
@@ -19423,7 +19423,7 @@
|
|
19423 |
},
|
19424 |
{
|
19425 |
"cell_type": "markdown",
|
19426 |
-
"id": "
|
19427 |
"metadata": {},
|
19428 |
"source": [
|
19429 |
"### Build Character"
|
@@ -19432,7 +19432,7 @@
|
|
19432 |
{
|
19433 |
"cell_type": "code",
|
19434 |
"execution_count": 8,
|
19435 |
-
"id": "
|
19436 |
"metadata": {},
|
19437 |
"outputs": [
|
19438 |
{
|
@@ -19480,7 +19480,7 @@
|
|
19480 |
{
|
19481 |
"cell_type": "code",
|
19482 |
"execution_count": 9,
|
19483 |
-
"id": "
|
19484 |
"metadata": {},
|
19485 |
"outputs": [],
|
19486 |
"source": [
|
@@ -19491,7 +19491,7 @@
|
|
19491 |
{
|
19492 |
"cell_type": "code",
|
19493 |
"execution_count": 10,
|
19494 |
-
"id": "
|
19495 |
"metadata": {},
|
19496 |
"outputs": [
|
19497 |
{
|
@@ -19509,7 +19509,7 @@
|
|
19509 |
{
|
19510 |
"cell_type": "code",
|
19511 |
"execution_count": 11,
|
19512 |
-
"id": "
|
19513 |
"metadata": {},
|
19514 |
"outputs": [
|
19515 |
{
|
@@ -19536,7 +19536,7 @@
|
|
19536 |
{
|
19537 |
"cell_type": "code",
|
19538 |
"execution_count": 12,
|
19539 |
-
"id": "
|
19540 |
"metadata": {},
|
19541 |
"outputs": [
|
19542 |
{
|
@@ -19554,7 +19554,7 @@
|
|
19554 |
{
|
19555 |
"cell_type": "code",
|
19556 |
"execution_count": 13,
|
19557 |
-
"id": "
|
19558 |
"metadata": {},
|
19559 |
"outputs": [],
|
19560 |
"source": [
|
@@ -19565,7 +19565,7 @@
|
|
19565 |
},
|
19566 |
{
|
19567 |
"cell_type": "markdown",
|
19568 |
-
"id": "
|
19569 |
"metadata": {},
|
19570 |
"source": [
|
19571 |
"# Tokenizer"
|
@@ -19574,7 +19574,7 @@
|
|
19574 |
{
|
19575 |
"cell_type": "code",
|
19576 |
"execution_count": 14,
|
19577 |
-
"id": "
|
19578 |
"metadata": {},
|
19579 |
"outputs": [],
|
19580 |
"source": [
|
@@ -19585,8 +19585,8 @@
|
|
19585 |
},
|
19586 |
{
|
19587 |
"cell_type": "code",
|
19588 |
-
"execution_count":
|
19589 |
-
"id": "
|
19590 |
"metadata": {},
|
19591 |
"outputs": [
|
19592 |
{
|
@@ -19598,25 +19598,9 @@
|
|
19598 |
"loading file ./tokenizer_config.json\n",
|
19599 |
"loading file ./added_tokens.json\n",
|
19600 |
"loading file ./special_tokens_map.json\n",
|
19601 |
-
"loading file None\n"
|
19602 |
-
|
19603 |
-
|
19604 |
-
{
|
19605 |
-
"ename": "JSONDecodeError",
|
19606 |
-
"evalue": "Expecting value: line 1 column 1 (char 0)",
|
19607 |
-
"output_type": "error",
|
19608 |
-
"traceback": [
|
19609 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
19610 |
-
"\u001b[0;31mJSONDecodeError\u001b[0m Traceback (most recent call last)",
|
19611 |
-
"Input \u001b[0;32mIn [62]\u001b[0m, in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m \u001b[43mWav2Vec2CTCTokenizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m./\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43munk_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m[UNK]\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpad_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m[PAD]\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mword_delimiter_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m|\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# './' load vocab.json in the current directory\u001b[39;00m\n\u001b[1;32m 2\u001b[0m feature_extractor \u001b[38;5;241m=\u001b[39m Wav2Vec2FeatureExtractor(feature_size\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m, sampling_rate\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m16000\u001b[39m, padding_value\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.0\u001b[39m, do_normalize\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, return_attention_mask\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m) \n\u001b[1;32m 3\u001b[0m processor \u001b[38;5;241m=\u001b[39m Wav2Vec2Processor(feature_extractor\u001b[38;5;241m=\u001b[39mfeature_extractor, tokenizer\u001b[38;5;241m=\u001b[39mtokenizer)\n",
|
19612 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/tokenization_utils_base.py:1773\u001b[0m, in \u001b[0;36mPreTrainedTokenizerBase.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *init_inputs, **kwargs)\u001b[0m\n\u001b[1;32m 1770\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1771\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mloading file \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfile_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m from cache at \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresolved_vocab_files[file_id]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 1773\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_from_pretrained\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1774\u001b[0m \u001b[43m \u001b[49m\u001b[43mresolved_vocab_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1775\u001b[0m \u001b[43m \u001b[49m\u001b[43mpretrained_model_name_or_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1776\u001b[0m \u001b[43m \u001b[49m\u001b[43minit_configuration\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1777\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minit_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1778\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_auth_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_auth_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1779\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1780\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1781\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
19613 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/tokenization_utils_base.py:1908\u001b[0m, in \u001b[0;36mPreTrainedTokenizerBase._from_pretrained\u001b[0;34m(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, use_auth_token, cache_dir, *init_inputs, **kwargs)\u001b[0m\n\u001b[1;32m 1906\u001b[0m \u001b[38;5;66;03m# Instantiate tokenizer.\u001b[39;00m\n\u001b[1;32m 1907\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1908\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minit_inputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minit_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1909\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m:\n\u001b[1;32m 1910\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m(\n\u001b[1;32m 1911\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUnable to load vocabulary from file. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1912\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPlease check that the provided vocabulary is accessible and not corrupted.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1913\u001b[0m )\n",
|
19614 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/models/wav2vec2/tokenization_wav2vec2.py:142\u001b[0m, in \u001b[0;36mWav2Vec2CTCTokenizer.__init__\u001b[0;34m(self, vocab_file, bos_token, eos_token, unk_token, pad_token, word_delimiter_token, do_lower_case, **kwargs)\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdo_lower_case \u001b[38;5;241m=\u001b[39m do_lower_case\n\u001b[1;32m 141\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mopen\u001b[39m(vocab_file, encoding\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mutf-8\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mas\u001b[39;00m vocab_handle:\n\u001b[0;32m--> 142\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mencoder \u001b[38;5;241m=\u001b[39m \u001b[43mjson\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvocab_handle\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 143\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdecoder \u001b[38;5;241m=\u001b[39m {v: k \u001b[38;5;28;01mfor\u001b[39;00m k, v \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mencoder\u001b[38;5;241m.\u001b[39mitems()}\n\u001b[1;32m 145\u001b[0m \u001b[38;5;66;03m# make sure that tokens made of several\u001b[39;00m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;66;03m# characters are not split at tokenization\u001b[39;00m\n",
|
19615 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/json/__init__.py:293\u001b[0m, in \u001b[0;36mload\u001b[0;34m(fp, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)\u001b[0m\n\u001b[1;32m 274\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mload\u001b[39m(fp, \u001b[38;5;241m*\u001b[39m, \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, object_hook\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, parse_float\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 275\u001b[0m parse_int\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, parse_constant\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, object_pairs_hook\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkw):\n\u001b[1;32m 276\u001b[0m \u001b[38;5;124;03m\"\"\"Deserialize ``fp`` (a ``.read()``-supporting file-like object containing\u001b[39;00m\n\u001b[1;32m 277\u001b[0m \u001b[38;5;124;03m a JSON document) to a Python object.\u001b[39;00m\n\u001b[1;32m 278\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 291\u001b[0m \u001b[38;5;124;03m kwarg; otherwise ``JSONDecoder`` is used.\u001b[39;00m\n\u001b[1;32m 292\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 293\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mloads\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 294\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mobject_hook\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mobject_hook\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 295\u001b[0m \u001b[43m \u001b[49m\u001b[43mparse_float\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparse_float\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparse_int\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparse_int\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 296\u001b[0m \u001b[43m \u001b[49m\u001b[43mparse_constant\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparse_constant\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mobject_pairs_hook\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mobject_pairs_hook\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkw\u001b[49m\u001b[43m)\u001b[49m\n",
|
19616 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/json/__init__.py:357\u001b[0m, in \u001b[0;36mloads\u001b[0;34m(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)\u001b[0m\n\u001b[1;32m 352\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m kw[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mencoding\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[1;32m 354\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\u001b[38;5;28mcls\u001b[39m \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m object_hook \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m\n\u001b[1;32m 355\u001b[0m parse_int \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m parse_float \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m\n\u001b[1;32m 356\u001b[0m parse_constant \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m object_pairs_hook \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m kw):\n\u001b[0;32m--> 357\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_default_decoder\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdecode\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 358\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mcls\u001b[39m \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 359\u001b[0m \u001b[38;5;28mcls\u001b[39m \u001b[38;5;241m=\u001b[39m JSONDecoder\n",
|
19617 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/json/decoder.py:337\u001b[0m, in \u001b[0;36mJSONDecoder.decode\u001b[0;34m(self, s, _w)\u001b[0m\n\u001b[1;32m 332\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdecode\u001b[39m(\u001b[38;5;28mself\u001b[39m, s, _w\u001b[38;5;241m=\u001b[39mWHITESPACE\u001b[38;5;241m.\u001b[39mmatch):\n\u001b[1;32m 333\u001b[0m \u001b[38;5;124;03m\"\"\"Return the Python representation of ``s`` (a ``str`` instance\u001b[39;00m\n\u001b[1;32m 334\u001b[0m \u001b[38;5;124;03m containing a JSON document).\u001b[39;00m\n\u001b[1;32m 335\u001b[0m \n\u001b[1;32m 336\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 337\u001b[0m obj, end \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraw_decode\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_w\u001b[49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mend\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 338\u001b[0m end \u001b[38;5;241m=\u001b[39m _w(s, end)\u001b[38;5;241m.\u001b[39mend()\n\u001b[1;32m 339\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m end \u001b[38;5;241m!=\u001b[39m \u001b[38;5;28mlen\u001b[39m(s):\n",
|
19618 |
-
"File \u001b[0;32m/opt/conda/lib/python3.8/json/decoder.py:355\u001b[0m, in \u001b[0;36mJSONDecoder.raw_decode\u001b[0;34m(self, s, idx)\u001b[0m\n\u001b[1;32m 353\u001b[0m obj, end \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscan_once(s, idx)\n\u001b[1;32m 354\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n\u001b[0;32m--> 355\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m JSONDecodeError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExpecting value\u001b[39m\u001b[38;5;124m\"\u001b[39m, s, err\u001b[38;5;241m.\u001b[39mvalue) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28mNone\u001b[39m\n\u001b[1;32m 356\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m obj, end\n",
|
19619 |
-
"\u001b[0;31mJSONDecodeError\u001b[0m: Expecting value: line 1 column 1 (char 0)"
|
19620 |
]
|
19621 |
}
|
19622 |
],
|
@@ -19629,7 +19613,7 @@
|
|
19629 |
{
|
19630 |
"cell_type": "code",
|
19631 |
"execution_count": 26,
|
19632 |
-
"id": "
|
19633 |
"metadata": {},
|
19634 |
"outputs": [],
|
19635 |
"source": [
|
@@ -19646,7 +19630,7 @@
|
|
19646 |
{
|
19647 |
"cell_type": "code",
|
19648 |
"execution_count": 27,
|
19649 |
-
"id": "
|
19650 |
"metadata": {},
|
19651 |
"outputs": [
|
19652 |
{
|
@@ -19686,7 +19670,7 @@
|
|
19686 |
{
|
19687 |
"cell_type": "code",
|
19688 |
"execution_count": 17,
|
19689 |
-
"id": "
|
19690 |
"metadata": {},
|
19691 |
"outputs": [],
|
19692 |
"source": [
|
@@ -19697,7 +19681,7 @@
|
|
19697 |
{
|
19698 |
"cell_type": "code",
|
19699 |
"execution_count": 18,
|
19700 |
-
"id": "
|
19701 |
"metadata": {},
|
19702 |
"outputs": [
|
19703 |
{
|
@@ -19722,7 +19706,7 @@
|
|
19722 |
{
|
19723 |
"cell_type": "code",
|
19724 |
"execution_count": 19,
|
19725 |
-
"id": "
|
19726 |
"metadata": {},
|
19727 |
"outputs": [
|
19728 |
{
|
@@ -19769,7 +19753,7 @@
|
|
19769 |
{
|
19770 |
"cell_type": "code",
|
19771 |
"execution_count": 20,
|
19772 |
-
"id": "
|
19773 |
"metadata": {},
|
19774 |
"outputs": [],
|
19775 |
"source": [
|
@@ -19791,7 +19775,7 @@
|
|
19791 |
{
|
19792 |
"cell_type": "code",
|
19793 |
"execution_count": 22,
|
19794 |
-
"id": "
|
19795 |
"metadata": {},
|
19796 |
"outputs": [],
|
19797 |
"source": [
|
@@ -19802,7 +19786,7 @@
|
|
19802 |
{
|
19803 |
"cell_type": "code",
|
19804 |
"execution_count": 41,
|
19805 |
-
"id": "
|
19806 |
"metadata": {},
|
19807 |
"outputs": [],
|
19808 |
"source": [
|
@@ -19814,7 +19798,7 @@
|
|
19814 |
{
|
19815 |
"cell_type": "code",
|
19816 |
"execution_count": 25,
|
19817 |
-
"id": "
|
19818 |
"metadata": {},
|
19819 |
"outputs": [],
|
19820 |
"source": [
|
@@ -19874,7 +19858,7 @@
|
|
19874 |
{
|
19875 |
"cell_type": "code",
|
19876 |
"execution_count": 26,
|
19877 |
-
"id": "
|
19878 |
"metadata": {},
|
19879 |
"outputs": [],
|
19880 |
"source": [
|
@@ -19884,7 +19868,7 @@
|
|
19884 |
{
|
19885 |
"cell_type": "code",
|
19886 |
"execution_count": 27,
|
19887 |
-
"id": "
|
19888 |
"metadata": {},
|
19889 |
"outputs": [],
|
19890 |
"source": [
|
@@ -19894,8 +19878,8 @@
|
|
19894 |
},
|
19895 |
{
|
19896 |
"cell_type": "code",
|
19897 |
-
"execution_count":
|
19898 |
-
"id": "
|
19899 |
"metadata": {},
|
19900 |
"outputs": [],
|
19901 |
"source": [
|
@@ -19908,9 +19892,9 @@
|
|
19908 |
" pred_str = tokenizer.batch_decode(pred_ids)\n",
|
19909 |
" label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)\n",
|
19910 |
"\n",
|
19911 |
-
"
|
19912 |
-
"
|
19913 |
-
"
|
19914 |
" \n",
|
19915 |
" wer = wer_metric.compute(predictions=pred_str, references=label_str)\n",
|
19916 |
"\n",
|
@@ -19919,8 +19903,8 @@
|
|
19919 |
},
|
19920 |
{
|
19921 |
"cell_type": "code",
|
19922 |
-
"execution_count":
|
19923 |
-
"id": "
|
19924 |
"metadata": {
|
19925 |
"collapsed": true,
|
19926 |
"jupyter": {
|
@@ -19932,15 +19916,16 @@
|
|
19932 |
"name": "stderr",
|
19933 |
"output_type": "stream",
|
19934 |
"text": [
|
19935 |
-
"loading configuration file
|
19936 |
"Model config Wav2Vec2Config {\n",
|
|
|
19937 |
" \"activation_dropout\": 0.0,\n",
|
19938 |
" \"adapter_kernel_size\": 3,\n",
|
19939 |
" \"adapter_stride\": 2,\n",
|
19940 |
" \"add_adapter\": false,\n",
|
19941 |
" \"apply_spec_augment\": true,\n",
|
19942 |
" \"architectures\": [\n",
|
19943 |
-
" \"
|
19944 |
" ],\n",
|
19945 |
" \"attention_dropout\": 0.1,\n",
|
19946 |
" \"bos_token_id\": 1,\n",
|
@@ -20041,12 +20026,11 @@
|
|
20041 |
" \"xvector_output_dim\": 512\n",
|
20042 |
"}\n",
|
20043 |
"\n",
|
20044 |
-
"loading weights file
|
20045 |
-
"
|
20046 |
-
"
|
20047 |
-
"
|
20048 |
-
"
|
20049 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
20050 |
]
|
20051 |
}
|
20052 |
],
|
@@ -20054,7 +20038,8 @@
|
|
20054 |
"from transformers import Wav2Vec2ForCTC\n",
|
20055 |
"\n",
|
20056 |
"model = Wav2Vec2ForCTC.from_pretrained(\n",
|
20057 |
-
"
|
|
|
20058 |
" attention_dropout=0.1,\n",
|
20059 |
" layerdrop=0.0,\n",
|
20060 |
" feat_proj_dropout=0.0,\n",
|
@@ -20070,8 +20055,8 @@
|
|
20070 |
},
|
20071 |
{
|
20072 |
"cell_type": "code",
|
20073 |
-
"execution_count":
|
20074 |
-
"id": "
|
20075 |
"metadata": {},
|
20076 |
"outputs": [],
|
20077 |
"source": [
|
@@ -20080,8 +20065,8 @@
|
|
20080 |
},
|
20081 |
{
|
20082 |
"cell_type": "code",
|
20083 |
-
"execution_count":
|
20084 |
-
"id": "
|
20085 |
"metadata": {},
|
20086 |
"outputs": [
|
20087 |
{
|
@@ -20109,7 +20094,7 @@
|
|
20109 |
" eval_steps=400,\n",
|
20110 |
" logging_steps=100,\n",
|
20111 |
" learning_rate=5e-5,\n",
|
20112 |
-
" warmup_steps=
|
20113 |
" save_total_limit=3,\n",
|
20114 |
" load_best_model_at_end=True\n",
|
20115 |
")"
|
@@ -20117,8 +20102,8 @@
|
|
20117 |
},
|
20118 |
{
|
20119 |
"cell_type": "code",
|
20120 |
-
"execution_count":
|
20121 |
-
"id": "
|
20122 |
"metadata": {},
|
20123 |
"outputs": [
|
20124 |
{
|
@@ -20145,14 +20130,9 @@
|
|
20145 |
},
|
20146 |
{
|
20147 |
"cell_type": "code",
|
20148 |
-
"execution_count":
|
20149 |
-
"id": "
|
20150 |
-
"metadata": {
|
20151 |
-
"collapsed": true,
|
20152 |
-
"jupyter": {
|
20153 |
-
"outputs_hidden": true
|
20154 |
-
}
|
20155 |
-
},
|
20156 |
"outputs": [
|
20157 |
{
|
20158 |
"name": "stderr",
|
@@ -20177,7 +20157,7 @@
|
|
20177 |
" <div>\n",
|
20178 |
" \n",
|
20179 |
" <progress value='4050' max='4050' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
20180 |
-
" [4050/4050 2:16:
|
20181 |
" </div>\n",
|
20182 |
" <table border=\"1\" class=\"dataframe\">\n",
|
20183 |
" <thead>\n",
|
@@ -20191,63 +20171,63 @@
|
|
20191 |
" <tbody>\n",
|
20192 |
" <tr>\n",
|
20193 |
" <td>400</td>\n",
|
20194 |
-
" <td>
|
20195 |
-
" <td>
|
20196 |
-
" <td>
|
20197 |
" </tr>\n",
|
20198 |
" <tr>\n",
|
20199 |
" <td>800</td>\n",
|
20200 |
-
" <td>
|
20201 |
-
" <td>
|
20202 |
-
" <td>
|
20203 |
" </tr>\n",
|
20204 |
" <tr>\n",
|
20205 |
" <td>1200</td>\n",
|
20206 |
-
" <td>
|
20207 |
-
" <td>
|
20208 |
-
" <td>
|
20209 |
" </tr>\n",
|
20210 |
" <tr>\n",
|
20211 |
" <td>1600</td>\n",
|
20212 |
-
" <td>
|
20213 |
-
" <td>
|
20214 |
-
" <td>0.
|
20215 |
" </tr>\n",
|
20216 |
" <tr>\n",
|
20217 |
" <td>2000</td>\n",
|
20218 |
-
" <td>1.
|
20219 |
-
" <td>0.
|
20220 |
-
" <td>0.
|
20221 |
" </tr>\n",
|
20222 |
" <tr>\n",
|
20223 |
" <td>2400</td>\n",
|
20224 |
-
" <td>1.
|
20225 |
-
" <td>0.
|
20226 |
-
" <td>0.
|
20227 |
" </tr>\n",
|
20228 |
" <tr>\n",
|
20229 |
" <td>2800</td>\n",
|
20230 |
-
" <td>1.
|
20231 |
-
" <td>0.
|
20232 |
-
" <td>0.
|
20233 |
" </tr>\n",
|
20234 |
" <tr>\n",
|
20235 |
" <td>3200</td>\n",
|
20236 |
-
" <td>1.
|
20237 |
-
" <td>0.
|
20238 |
-
" <td>0.
|
20239 |
" </tr>\n",
|
20240 |
" <tr>\n",
|
20241 |
" <td>3600</td>\n",
|
20242 |
-
" <td>1.
|
20243 |
-
" <td>0.
|
20244 |
-
" <td>0.
|
20245 |
" </tr>\n",
|
20246 |
" <tr>\n",
|
20247 |
" <td>4000</td>\n",
|
20248 |
-
" <td>1.
|
20249 |
-
" <td>0.
|
20250 |
-
" <td>0.
|
20251 |
" </tr>\n",
|
20252 |
" </tbody>\n",
|
20253 |
"</table><p>"
|
@@ -20266,196 +20246,35 @@
|
|
20266 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20267 |
"***** Running Evaluation *****\n",
|
20268 |
" Num examples = 291\n",
|
20269 |
-
" Batch size = 8\n"
|
20270 |
-
]
|
20271 |
-
},
|
20272 |
-
{
|
20273 |
-
"name": "stdout",
|
20274 |
-
"output_type": "stream",
|
20275 |
-
"text": [
|
20276 |
-
"pred : [72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20277 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20278 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20279 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20280 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20281 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20282 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20283 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20284 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20285 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20286 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20287 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20288 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20289 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20290 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 0 0 0 0 0 0 0\n",
|
20291 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20292 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20293 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20294 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20295 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20296 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20297 |
-
" 0 0 0 0 0 0 0]\n",
|
20298 |
-
"label: [30 63 45 0 11 43 6 64 0 25 62 49 16 49 0 20 58 0 23 54 28 0 11 55\n",
|
20299 |
-
" 28 0 21 70 27 51 0 42 70 26 0 13 48 21 0 30 25 70 24 43 27 61 0 3\n",
|
20300 |
-
" 70 27 52 5 0 30 5 70 31 43 27 46 25 0 26 1 0 18 58 0 42 70 26 0\n",
|
20301 |
-
" 25 62 49 26 0 20 58 0 25 70 11 48 59 0 29 16 70 11 0 30 59 27 57 5\n",
|
20302 |
-
" 33 15 70 11 55 16 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20303 |
-
" 72 72 72 72 72 72 72]\n",
|
20304 |
-
"-----------------\n"
|
20305 |
-
]
|
20306 |
-
},
|
20307 |
-
{
|
20308 |
-
"name": "stderr",
|
20309 |
-
"output_type": "stream",
|
20310 |
-
"text": [
|
20311 |
"Saving model checkpoint to ./checkpoint-400\n",
|
20312 |
"Configuration saved in ./checkpoint-400/config.json\n",
|
20313 |
"Model weights saved in ./checkpoint-400/pytorch_model.bin\n",
|
20314 |
"Configuration saved in ./checkpoint-400/preprocessor_config.json\n",
|
|
|
|
|
20315 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20316 |
"***** Running Evaluation *****\n",
|
20317 |
" Num examples = 291\n",
|
20318 |
-
" Batch size = 8\n"
|
20319 |
-
]
|
20320 |
-
},
|
20321 |
-
{
|
20322 |
-
"name": "stdout",
|
20323 |
-
"output_type": "stream",
|
20324 |
-
"text": [
|
20325 |
-
"pred : [72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20326 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20327 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20328 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20329 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20330 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20331 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20332 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20333 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20334 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20335 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20336 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20337 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20338 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20339 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 0 0 0 0 0 0 0\n",
|
20340 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20341 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20342 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20343 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20344 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20345 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20346 |
-
" 0 0 0 0 0 0 0]\n",
|
20347 |
-
"label: [30 63 45 0 11 43 6 64 0 25 62 49 16 49 0 20 58 0 23 54 28 0 11 55\n",
|
20348 |
-
" 28 0 21 70 27 51 0 42 70 26 0 13 48 21 0 30 25 70 24 43 27 61 0 3\n",
|
20349 |
-
" 70 27 52 5 0 30 5 70 31 43 27 46 25 0 26 1 0 18 58 0 42 70 26 0\n",
|
20350 |
-
" 25 62 49 26 0 20 58 0 25 70 11 48 59 0 29 16 70 11 0 30 59 27 57 5\n",
|
20351 |
-
" 33 15 70 11 55 16 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20352 |
-
" 72 72 72 72 72 72 72]\n",
|
20353 |
-
"-----------------\n"
|
20354 |
-
]
|
20355 |
-
},
|
20356 |
-
{
|
20357 |
-
"name": "stderr",
|
20358 |
-
"output_type": "stream",
|
20359 |
-
"text": [
|
20360 |
"Saving model checkpoint to ./checkpoint-800\n",
|
20361 |
"Configuration saved in ./checkpoint-800/config.json\n",
|
20362 |
"Model weights saved in ./checkpoint-800/pytorch_model.bin\n",
|
20363 |
"Configuration saved in ./checkpoint-800/preprocessor_config.json\n",
|
|
|
20364 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20365 |
"***** Running Evaluation *****\n",
|
20366 |
" Num examples = 291\n",
|
20367 |
-
" Batch size = 8\n"
|
20368 |
-
]
|
20369 |
-
},
|
20370 |
-
{
|
20371 |
-
"name": "stdout",
|
20372 |
-
"output_type": "stream",
|
20373 |
-
"text": [
|
20374 |
-
"pred : [ 1 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20375 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20376 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20377 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20378 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20379 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20380 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20381 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20382 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20383 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20384 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20385 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20386 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20387 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20388 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 0 0 0 0 0 0 0\n",
|
20389 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20390 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20391 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20392 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20393 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20394 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20395 |
-
" 0 0 0 0 0 0 0]\n",
|
20396 |
-
"label: [30 63 45 0 11 43 6 64 0 25 62 49 16 49 0 20 58 0 23 54 28 0 11 55\n",
|
20397 |
-
" 28 0 21 70 27 51 0 42 70 26 0 13 48 21 0 30 25 70 24 43 27 61 0 3\n",
|
20398 |
-
" 70 27 52 5 0 30 5 70 31 43 27 46 25 0 26 1 0 18 58 0 42 70 26 0\n",
|
20399 |
-
" 25 62 49 26 0 20 58 0 25 70 11 48 59 0 29 16 70 11 0 30 59 27 57 5\n",
|
20400 |
-
" 33 15 70 11 55 16 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20401 |
-
" 72 72 72 72 72 72 72]\n",
|
20402 |
-
"-----------------\n"
|
20403 |
-
]
|
20404 |
-
},
|
20405 |
-
{
|
20406 |
-
"name": "stderr",
|
20407 |
-
"output_type": "stream",
|
20408 |
-
"text": [
|
20409 |
"Saving model checkpoint to ./checkpoint-1200\n",
|
20410 |
"Configuration saved in ./checkpoint-1200/config.json\n",
|
20411 |
"Model weights saved in ./checkpoint-1200/pytorch_model.bin\n",
|
20412 |
"Configuration saved in ./checkpoint-1200/preprocessor_config.json\n",
|
20413 |
-
"Deleting older checkpoint [checkpoint-
|
20414 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20415 |
"***** Running Evaluation *****\n",
|
20416 |
" Num examples = 291\n",
|
20417 |
-
" Batch size = 8\n"
|
20418 |
-
]
|
20419 |
-
},
|
20420 |
-
{
|
20421 |
-
"name": "stdout",
|
20422 |
-
"output_type": "stream",
|
20423 |
-
"text": [
|
20424 |
-
"pred : [30 45 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20425 |
-
" 72 72 72 72 72 72 72 72 72 11 43 72 72 72 72 6 26 0 72 25 72 72 72 72\n",
|
20426 |
-
" 72 72 72 18 49 72 72 72 72 72 0 72 20 58 72 72 0 0 72 72 72 23 54 72\n",
|
20427 |
-
" 72 72 0 72 11 55 72 72 28 0 0 72 72 21 70 70 27 43 72 72 72 72 72 72\n",
|
20428 |
-
" 0 0 0 33 72 72 72 72 26 26 72 72 11 48 72 72 72 21 21 64 0 72 72 30\n",
|
20429 |
-
" 72 72 72 72 72 72 59 72 72 72 23 54 72 72 72 27 27 72 72 72 72 72 1 72\n",
|
20430 |
-
" 72 0 0 72 72 72 72 72 3 70 27 27 50 72 72 72 5 0 0 72 30 30 44 72\n",
|
20431 |
-
" 72 5 5 70 72 31 31 43 72 72 72 72 72 72 72 72 27 27 72 72 72 72 72 25\n",
|
20432 |
-
" 72 0 0 72 26 72 72 72 72 72 72 72 1 0 72 72 18 58 72 0 0 0 33 72\n",
|
20433 |
-
" 72 72 72 72 72 72 26 26 0 0 72 72 25 25 49 72 72 72 72 72 72 72 72 26\n",
|
20434 |
-
" 0 0 72 20 58 72 72 72 72 0 0 21 25 72 70 70 70 72 11 72 72 72 72 72\n",
|
20435 |
-
" 72 59 72 72 72 72 72 29 72 72 72 72 72 70 70 16 0 0 30 30 72 72 72 25\n",
|
20436 |
-
" 70 70 72 27 48 72 72 72 5 5 0 33 72 72 20 70 70 70 70 11 55 72 72 72\n",
|
20437 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20438 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 16 16 0 0 0 0 0 0 0\n",
|
20439 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20440 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20441 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20442 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20443 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20444 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20445 |
-
" 0 0 0 0 0 0 0]\n",
|
20446 |
-
"label: [30 63 45 0 11 43 6 64 0 25 62 49 16 49 0 20 58 0 23 54 28 0 11 55\n",
|
20447 |
-
" 28 0 21 70 27 51 0 42 70 26 0 13 48 21 0 30 25 70 24 43 27 61 0 3\n",
|
20448 |
-
" 70 27 52 5 0 30 5 70 31 43 27 46 25 0 26 1 0 18 58 0 42 70 26 0\n",
|
20449 |
-
" 25 62 49 26 0 20 58 0 25 70 11 48 59 0 29 16 70 11 0 30 59 27 57 5\n",
|
20450 |
-
" 33 15 70 11 55 16 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20451 |
-
" 72 72 72 72 72 72 72]\n",
|
20452 |
-
"-----------------\n"
|
20453 |
-
]
|
20454 |
-
},
|
20455 |
-
{
|
20456 |
-
"name": "stderr",
|
20457 |
-
"output_type": "stream",
|
20458 |
-
"text": [
|
20459 |
"Saving model checkpoint to ./checkpoint-1600\n",
|
20460 |
"Configuration saved in ./checkpoint-1600/config.json\n",
|
20461 |
"Model weights saved in ./checkpoint-1600/pytorch_model.bin\n",
|
@@ -20464,48 +20283,7 @@
|
|
20464 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20465 |
"***** Running Evaluation *****\n",
|
20466 |
" Num examples = 291\n",
|
20467 |
-
" Batch size = 8\n"
|
20468 |
-
]
|
20469 |
-
},
|
20470 |
-
{
|
20471 |
-
"name": "stdout",
|
20472 |
-
"output_type": "stream",
|
20473 |
-
"text": [
|
20474 |
-
"pred : [30 63 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20475 |
-
" 72 72 72 45 72 72 72 72 72 11 43 72 72 72 72 6 72 0 72 25 72 72 72 72\n",
|
20476 |
-
" 72 72 72 16 72 72 72 72 72 72 0 72 20 58 72 72 0 0 72 72 72 23 54 72\n",
|
20477 |
-
" 72 27 0 72 11 55 72 72 28 0 0 72 72 21 70 72 27 51 72 72 72 72 72 72\n",
|
20478 |
-
" 0 0 0 33 70 72 72 72 26 0 0 72 72 11 72 72 72 21 21 64 0 72 72 30\n",
|
20479 |
-
" 30 72 72 72 72 72 59 72 72 72 23 54 72 72 72 27 27 72 72 72 72 1 72 72\n",
|
20480 |
-
" 72 72 72 72 72 72 72 72 3 70 72 27 50 72 72 72 5 0 0 72 30 30 44 72\n",
|
20481 |
-
" 72 5 70 70 70 31 31 43 72 72 72 72 72 72 72 72 27 27 44 72 72 72 72 25\n",
|
20482 |
-
" 72 0 0 72 26 72 72 72 72 72 72 1 1 0 72 72 18 58 72 0 0 0 33 70\n",
|
20483 |
-
" 70 72 72 72 72 72 26 72 0 0 72 72 72 25 50 72 72 72 72 72 72 72 26 26\n",
|
20484 |
-
" 0 0 72 20 58 72 72 72 72 0 0 72 25 72 72 70 70 72 11 72 72 72 72 72\n",
|
20485 |
-
" 72 59 72 0 0 72 72 29 29 16 72 72 72 70 16 16 0 0 72 30 72 72 72 25\n",
|
20486 |
-
" 70 70 72 27 72 72 72 72 5 5 0 33 72 72 15 70 70 70 72 11 55 72 72 72\n",
|
20487 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20488 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 16 16 0 0 0 0 0 0 0\n",
|
20489 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20490 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20491 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20492 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20493 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20494 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20495 |
-
" 0 0 0 0 0 0 0]\n",
|
20496 |
-
"label: [30 63 45 0 11 43 6 64 0 25 62 49 16 49 0 20 58 0 23 54 28 0 11 55\n",
|
20497 |
-
" 28 0 21 70 27 51 0 42 70 26 0 13 48 21 0 30 25 70 24 43 27 61 0 3\n",
|
20498 |
-
" 70 27 52 5 0 30 5 70 31 43 27 46 25 0 26 1 0 18 58 0 42 70 26 0\n",
|
20499 |
-
" 25 62 49 26 0 20 58 0 25 70 11 48 59 0 29 16 70 11 0 30 59 27 57 5\n",
|
20500 |
-
" 33 15 70 11 55 16 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20501 |
-
" 72 72 72 72 72 72 72]\n",
|
20502 |
-
"-----------------\n"
|
20503 |
-
]
|
20504 |
-
},
|
20505 |
-
{
|
20506 |
-
"name": "stderr",
|
20507 |
-
"output_type": "stream",
|
20508 |
-
"text": [
|
20509 |
"Saving model checkpoint to ./checkpoint-2000\n",
|
20510 |
"Configuration saved in ./checkpoint-2000/config.json\n",
|
20511 |
"Model weights saved in ./checkpoint-2000/pytorch_model.bin\n",
|
@@ -20514,48 +20292,7 @@
|
|
20514 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20515 |
"***** Running Evaluation *****\n",
|
20516 |
" Num examples = 291\n",
|
20517 |
-
" Batch size = 8\n"
|
20518 |
-
]
|
20519 |
-
},
|
20520 |
-
{
|
20521 |
-
"name": "stdout",
|
20522 |
-
"output_type": "stream",
|
20523 |
-
"text": [
|
20524 |
-
"pred : [30 63 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20525 |
-
" 72 72 45 72 72 72 72 72 72 11 43 72 72 72 72 6 6 0 72 25 62 72 72 72\n",
|
20526 |
-
" 72 72 72 16 49 72 72 72 72 72 0 72 20 58 72 72 0 0 72 72 23 54 72 72\n",
|
20527 |
-
" 72 28 0 11 55 72 72 72 28 0 0 72 72 21 70 70 27 51 72 72 72 72 72 72\n",
|
20528 |
-
" 0 0 0 33 70 72 72 72 26 0 0 72 11 72 72 72 72 21 21 64 0 72 72 30\n",
|
20529 |
-
" 72 72 72 72 72 72 59 72 72 72 23 54 72 72 72 27 27 72 72 72 72 1 72 72\n",
|
20530 |
-
" 0 0 72 72 72 72 72 72 3 70 72 27 52 72 72 72 5 0 0 72 30 30 44 72\n",
|
20531 |
-
" 72 5 70 70 72 31 43 72 72 72 72 72 72 72 72 72 27 44 44 72 72 72 25 25\n",
|
20532 |
-
" 72 0 0 72 26 26 72 72 72 72 72 1 1 0 72 18 58 72 72 0 0 72 33 70\n",
|
20533 |
-
" 72 72 72 72 72 72 26 72 0 0 72 72 72 25 49 72 72 72 72 72 72 72 26 26\n",
|
20534 |
-
" 0 0 72 20 58 72 72 72 72 72 0 72 25 72 70 70 72 11 48 72 72 72 72 72\n",
|
20535 |
-
" 59 59 72 0 0 72 72 29 16 16 72 72 70 70 16 72 0 0 30 30 72 72 72 25\n",
|
20536 |
-
" 70 70 72 27 72 72 72 72 5 72 0 33 72 72 15 70 70 72 11 55 72 72 72 72\n",
|
20537 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20538 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 16 16 0 0 0 0 0 0 0\n",
|
20539 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20540 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20541 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20542 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20543 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20544 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20545 |
-
" 0 0 0 0 0 0 0]\n",
|
20546 |
-
"label: [30 63 45 0 11 43 6 64 0 25 62 49 16 49 0 20 58 0 23 54 28 0 11 55\n",
|
20547 |
-
" 28 0 21 70 27 51 0 42 70 26 0 13 48 21 0 30 25 70 24 43 27 61 0 3\n",
|
20548 |
-
" 70 27 52 5 0 30 5 70 31 43 27 46 25 0 26 1 0 18 58 0 42 70 26 0\n",
|
20549 |
-
" 25 62 49 26 0 20 58 0 25 70 11 48 59 0 29 16 70 11 0 30 59 27 57 5\n",
|
20550 |
-
" 33 15 70 11 55 16 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20551 |
-
" 72 72 72 72 72 72 72]\n",
|
20552 |
-
"-----------------\n"
|
20553 |
-
]
|
20554 |
-
},
|
20555 |
-
{
|
20556 |
-
"name": "stderr",
|
20557 |
-
"output_type": "stream",
|
20558 |
-
"text": [
|
20559 |
"Saving model checkpoint to ./checkpoint-2400\n",
|
20560 |
"Configuration saved in ./checkpoint-2400/config.json\n",
|
20561 |
"Model weights saved in ./checkpoint-2400/pytorch_model.bin\n",
|
@@ -20564,48 +20301,7 @@
|
|
20564 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20565 |
"***** Running Evaluation *****\n",
|
20566 |
" Num examples = 291\n",
|
20567 |
-
" Batch size = 8\n"
|
20568 |
-
]
|
20569 |
-
},
|
20570 |
-
{
|
20571 |
-
"name": "stdout",
|
20572 |
-
"output_type": "stream",
|
20573 |
-
"text": [
|
20574 |
-
"pred : [30 63 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20575 |
-
" 72 72 72 72 72 72 72 72 72 11 54 72 72 72 72 6 72 0 72 25 62 49 72 72\n",
|
20576 |
-
" 72 72 72 16 49 72 72 72 72 72 0 72 20 58 72 72 0 0 72 72 23 54 72 72\n",
|
20577 |
-
" 72 28 0 72 11 55 72 72 28 0 0 72 72 21 70 70 27 51 72 72 72 72 72 72\n",
|
20578 |
-
" 0 0 0 33 70 72 72 72 26 0 0 72 11 48 72 72 72 21 21 64 0 72 72 30\n",
|
20579 |
-
" 72 72 72 72 72 25 59 72 72 72 23 54 72 72 72 27 27 72 72 72 72 72 72 72\n",
|
20580 |
-
" 0 0 72 72 72 72 72 72 3 70 72 27 52 72 72 72 5 0 0 72 30 30 44 72\n",
|
20581 |
-
" 72 5 70 70 72 31 43 72 72 72 72 72 72 72 72 72 27 44 72 72 72 72 25 25\n",
|
20582 |
-
" 72 0 0 72 26 72 72 72 72 72 72 1 1 0 72 18 58 72 72 0 0 0 33 70\n",
|
20583 |
-
" 72 72 72 72 72 72 26 72 0 0 72 72 72 25 50 72 72 72 72 72 72 72 26 26\n",
|
20584 |
-
" 0 0 72 20 58 72 72 72 72 72 0 72 25 72 70 70 70 72 11 48 72 72 72 72\n",
|
20585 |
-
" 72 59 72 0 0 72 72 29 16 72 72 72 70 70 16 72 0 0 30 30 72 72 72 25\n",
|
20586 |
-
" 70 72 72 27 72 72 72 72 5 72 0 33 72 72 15 70 70 72 11 55 72 72 72 72\n",
|
20587 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20588 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 16 16 0 0 0 0 0 0 0\n",
|
20589 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20590 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20591 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20592 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20593 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20594 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20595 |
-
" 0 0 0 0 0 0 0]\n",
|
20596 |
-
"label: [30 63 45 0 11 43 6 64 0 25 62 49 16 49 0 20 58 0 23 54 28 0 11 55\n",
|
20597 |
-
" 28 0 21 70 27 51 0 42 70 26 0 13 48 21 0 30 25 70 24 43 27 61 0 3\n",
|
20598 |
-
" 70 27 52 5 0 30 5 70 31 43 27 46 25 0 26 1 0 18 58 0 42 70 26 0\n",
|
20599 |
-
" 25 62 49 26 0 20 58 0 25 70 11 48 59 0 29 16 70 11 0 30 59 27 57 5\n",
|
20600 |
-
" 33 15 70 11 55 16 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20601 |
-
" 72 72 72 72 72 72 72]\n",
|
20602 |
-
"-----------------\n"
|
20603 |
-
]
|
20604 |
-
},
|
20605 |
-
{
|
20606 |
-
"name": "stderr",
|
20607 |
-
"output_type": "stream",
|
20608 |
-
"text": [
|
20609 |
"Saving model checkpoint to ./checkpoint-2800\n",
|
20610 |
"Configuration saved in ./checkpoint-2800/config.json\n",
|
20611 |
"Model weights saved in ./checkpoint-2800/pytorch_model.bin\n",
|
@@ -20614,48 +20310,7 @@
|
|
20614 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20615 |
"***** Running Evaluation *****\n",
|
20616 |
" Num examples = 291\n",
|
20617 |
-
" Batch size = 8\n"
|
20618 |
-
]
|
20619 |
-
},
|
20620 |
-
{
|
20621 |
-
"name": "stdout",
|
20622 |
-
"output_type": "stream",
|
20623 |
-
"text": [
|
20624 |
-
"pred : [30 63 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20625 |
-
" 72 72 72 72 72 72 72 72 72 11 43 72 72 72 72 6 72 0 72 25 62 62 49 72\n",
|
20626 |
-
" 72 72 72 16 49 72 72 72 72 0 0 72 20 58 72 72 0 0 72 72 23 54 18 72\n",
|
20627 |
-
" 72 28 0 72 11 55 72 28 28 0 0 72 72 21 70 72 27 51 72 72 72 72 72 72\n",
|
20628 |
-
" 0 0 0 33 70 72 72 72 26 0 0 72 11 48 72 72 72 21 64 64 0 72 72 30\n",
|
20629 |
-
" 72 72 72 72 72 25 72 72 72 72 23 54 72 72 72 27 27 72 72 72 72 1 72 72\n",
|
20630 |
-
" 0 0 72 72 72 72 72 72 3 70 27 52 72 72 72 72 5 0 0 72 30 30 44 72\n",
|
20631 |
-
" 72 5 70 70 72 31 43 72 72 72 72 72 72 72 72 72 27 44 72 72 72 72 25 72\n",
|
20632 |
-
" 72 0 0 72 26 26 72 72 72 72 72 1 72 0 72 18 58 72 72 0 0 0 33 70\n",
|
20633 |
-
" 72 72 72 72 72 72 26 72 0 0 72 72 72 25 50 72 72 72 72 72 72 72 26 72\n",
|
20634 |
-
" 0 0 72 20 58 72 72 72 72 0 0 72 25 72 72 70 70 72 11 48 72 72 72 72\n",
|
20635 |
-
" 59 72 72 0 0 72 72 29 16 72 72 72 70 70 16 72 0 0 72 30 72 72 72 25\n",
|
20636 |
-
" 70 72 27 27 72 72 72 72 5 72 0 33 72 72 15 70 70 72 11 55 72 72 72 72\n",
|
20637 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20638 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 16 16 0 0 0 0 0 0 0\n",
|
20639 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20640 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20641 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20642 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20643 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20644 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20645 |
-
" 0 0 0 0 0 0 0]\n",
|
20646 |
-
"label: [30 63 45 0 11 43 6 64 0 25 62 49 16 49 0 20 58 0 23 54 28 0 11 55\n",
|
20647 |
-
" 28 0 21 70 27 51 0 42 70 26 0 13 48 21 0 30 25 70 24 43 27 61 0 3\n",
|
20648 |
-
" 70 27 52 5 0 30 5 70 31 43 27 46 25 0 26 1 0 18 58 0 42 70 26 0\n",
|
20649 |
-
" 25 62 49 26 0 20 58 0 25 70 11 48 59 0 29 16 70 11 0 30 59 27 57 5\n",
|
20650 |
-
" 33 15 70 11 55 16 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20651 |
-
" 72 72 72 72 72 72 72]\n",
|
20652 |
-
"-----------------\n"
|
20653 |
-
]
|
20654 |
-
},
|
20655 |
-
{
|
20656 |
-
"name": "stderr",
|
20657 |
-
"output_type": "stream",
|
20658 |
-
"text": [
|
20659 |
"Saving model checkpoint to ./checkpoint-3200\n",
|
20660 |
"Configuration saved in ./checkpoint-3200/config.json\n",
|
20661 |
"Model weights saved in ./checkpoint-3200/pytorch_model.bin\n",
|
@@ -20664,48 +20319,7 @@
|
|
20664 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20665 |
"***** Running Evaluation *****\n",
|
20666 |
" Num examples = 291\n",
|
20667 |
-
" Batch size = 8\n"
|
20668 |
-
]
|
20669 |
-
},
|
20670 |
-
{
|
20671 |
-
"name": "stdout",
|
20672 |
-
"output_type": "stream",
|
20673 |
-
"text": [
|
20674 |
-
"pred : [30 63 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20675 |
-
" 72 72 72 72 72 72 72 72 72 11 44 72 72 72 72 6 72 0 72 25 62 49 49 72\n",
|
20676 |
-
" 72 72 72 16 49 72 72 72 72 72 0 72 20 58 72 72 0 0 72 72 23 54 72 72\n",
|
20677 |
-
" 72 28 0 72 11 55 72 72 28 0 0 72 72 21 70 70 27 51 72 72 72 72 72 72\n",
|
20678 |
-
" 0 0 0 42 70 72 72 72 26 0 0 72 11 48 72 72 72 21 64 64 0 72 72 30\n",
|
20679 |
-
" 72 72 72 72 72 25 72 72 72 72 23 54 72 72 72 27 27 72 72 72 72 72 72 72\n",
|
20680 |
-
" 0 0 72 72 72 72 72 72 3 70 72 27 52 72 72 72 5 0 0 72 30 30 44 72\n",
|
20681 |
-
" 72 5 70 70 72 31 43 72 72 72 72 72 72 72 72 72 27 44 72 72 72 72 25 72\n",
|
20682 |
-
" 72 0 0 72 72 26 72 72 72 72 72 1 72 0 72 18 58 72 72 0 0 0 33 70\n",
|
20683 |
-
" 72 72 72 72 72 72 26 72 0 0 72 72 72 25 50 72 72 72 72 72 72 72 26 26\n",
|
20684 |
-
" 0 0 72 20 58 72 72 72 72 72 0 72 25 72 72 70 70 72 11 48 72 72 72 72\n",
|
20685 |
-
" 72 59 72 72 0 72 72 29 16 72 72 72 72 70 16 72 0 0 72 30 72 72 72 25\n",
|
20686 |
-
" 70 72 72 27 72 72 72 72 5 72 0 33 72 72 15 70 70 72 11 55 72 72 72 72\n",
|
20687 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20688 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 16 16 0 0 0 0 0 0 0\n",
|
20689 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20690 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20691 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20692 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20693 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20694 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20695 |
-
" 0 0 0 0 0 0 0]\n",
|
20696 |
-
"label: [30 63 45 0 11 43 6 64 0 25 62 49 16 49 0 20 58 0 23 54 28 0 11 55\n",
|
20697 |
-
" 28 0 21 70 27 51 0 42 70 26 0 13 48 21 0 30 25 70 24 43 27 61 0 3\n",
|
20698 |
-
" 70 27 52 5 0 30 5 70 31 43 27 46 25 0 26 1 0 18 58 0 42 70 26 0\n",
|
20699 |
-
" 25 62 49 26 0 20 58 0 25 70 11 48 59 0 29 16 70 11 0 30 59 27 57 5\n",
|
20700 |
-
" 33 15 70 11 55 16 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20701 |
-
" 72 72 72 72 72 72 72]\n",
|
20702 |
-
"-----------------\n"
|
20703 |
-
]
|
20704 |
-
},
|
20705 |
-
{
|
20706 |
-
"name": "stderr",
|
20707 |
-
"output_type": "stream",
|
20708 |
-
"text": [
|
20709 |
"Saving model checkpoint to ./checkpoint-3600\n",
|
20710 |
"Configuration saved in ./checkpoint-3600/config.json\n",
|
20711 |
"Model weights saved in ./checkpoint-3600/pytorch_model.bin\n",
|
@@ -20714,48 +20328,7 @@
|
|
20714 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20715 |
"***** Running Evaluation *****\n",
|
20716 |
" Num examples = 291\n",
|
20717 |
-
" Batch size = 8\n"
|
20718 |
-
]
|
20719 |
-
},
|
20720 |
-
{
|
20721 |
-
"name": "stdout",
|
20722 |
-
"output_type": "stream",
|
20723 |
-
"text": [
|
20724 |
-
"pred : [30 63 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20725 |
-
" 72 72 72 72 72 72 72 72 72 11 43 72 72 72 72 6 72 0 72 25 62 62 49 72\n",
|
20726 |
-
" 72 72 72 16 49 72 72 72 72 72 0 72 20 58 72 72 0 0 72 72 23 54 18 72\n",
|
20727 |
-
" 72 28 0 0 11 55 72 72 28 0 0 72 72 21 70 70 27 51 72 72 72 72 72 72\n",
|
20728 |
-
" 0 0 0 42 70 72 72 72 26 0 0 72 11 48 72 72 72 21 21 64 0 72 72 30\n",
|
20729 |
-
" 30 72 72 72 72 25 72 72 72 72 23 54 72 72 72 27 27 72 72 72 72 72 72 72\n",
|
20730 |
-
" 0 0 72 72 72 72 72 72 3 70 72 27 52 72 72 72 5 0 0 72 30 30 44 72\n",
|
20731 |
-
" 72 5 70 70 72 31 43 72 72 72 72 72 72 72 72 72 27 46 72 72 72 72 25 72\n",
|
20732 |
-
" 72 0 0 72 72 26 72 72 72 72 72 1 72 0 72 18 58 72 72 0 0 0 33 70\n",
|
20733 |
-
" 72 72 72 72 72 72 26 72 0 0 72 72 72 25 50 72 72 72 72 72 72 72 26 26\n",
|
20734 |
-
" 0 0 72 20 58 72 72 72 72 72 0 72 25 72 70 70 70 72 11 48 72 72 72 72\n",
|
20735 |
-
" 72 59 72 72 0 72 72 29 16 72 72 72 70 70 16 72 0 0 72 30 72 72 72 25\n",
|
20736 |
-
" 72 72 72 27 72 72 72 72 5 72 0 33 72 72 15 70 70 72 72 12 55 72 72 72\n",
|
20737 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20738 |
-
" 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 16 16 0 0 0 0 0 0 0\n",
|
20739 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20740 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20741 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20742 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20743 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20744 |
-
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
20745 |
-
" 0 0 0 0 0 0 0]\n",
|
20746 |
-
"label: [30 63 45 0 11 43 6 64 0 25 62 49 16 49 0 20 58 0 23 54 28 0 11 55\n",
|
20747 |
-
" 28 0 21 70 27 51 0 42 70 26 0 13 48 21 0 30 25 70 24 43 27 61 0 3\n",
|
20748 |
-
" 70 27 52 5 0 30 5 70 31 43 27 46 25 0 26 1 0 18 58 0 42 70 26 0\n",
|
20749 |
-
" 25 62 49 26 0 20 58 0 25 70 11 48 59 0 29 16 70 11 0 30 59 27 57 5\n",
|
20750 |
-
" 33 15 70 11 55 16 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72\n",
|
20751 |
-
" 72 72 72 72 72 72 72]\n",
|
20752 |
-
"-----------------\n"
|
20753 |
-
]
|
20754 |
-
},
|
20755 |
-
{
|
20756 |
-
"name": "stderr",
|
20757 |
-
"output_type": "stream",
|
20758 |
-
"text": [
|
20759 |
"Saving model checkpoint to ./checkpoint-4000\n",
|
20760 |
"Configuration saved in ./checkpoint-4000/config.json\n",
|
20761 |
"Model weights saved in ./checkpoint-4000/pytorch_model.bin\n",
|
@@ -20766,16 +20339,16 @@
|
|
20766 |
"Training completed. Do not forget to share your model on huggingface.co/models =)\n",
|
20767 |
"\n",
|
20768 |
"\n",
|
20769 |
-
"Loading best model from ./checkpoint-4000 (score: 0.
|
20770 |
]
|
20771 |
},
|
20772 |
{
|
20773 |
"data": {
|
20774 |
"text/plain": [
|
20775 |
-
"TrainOutput(global_step=4050, training_loss=
|
20776 |
]
|
20777 |
},
|
20778 |
-
"execution_count":
|
20779 |
"metadata": {},
|
20780 |
"output_type": "execute_result"
|
20781 |
}
|
@@ -20787,7 +20360,7 @@
|
|
20787 |
{
|
20788 |
"cell_type": "code",
|
20789 |
"execution_count": 57,
|
20790 |
-
"id": "
|
20791 |
"metadata": {},
|
20792 |
"outputs": [
|
20793 |
{
|
@@ -20806,8 +20379,8 @@
|
|
20806 |
},
|
20807 |
{
|
20808 |
"cell_type": "code",
|
20809 |
-
"execution_count":
|
20810 |
-
"id": "
|
20811 |
"metadata": {},
|
20812 |
"outputs": [],
|
20813 |
"source": [
|
@@ -20823,8 +20396,8 @@
|
|
20823 |
},
|
20824 |
{
|
20825 |
"cell_type": "code",
|
20826 |
-
"execution_count":
|
20827 |
-
"id": "
|
20828 |
"metadata": {},
|
20829 |
"outputs": [
|
20830 |
{
|
@@ -20842,8 +20415,8 @@
|
|
20842 |
},
|
20843 |
{
|
20844 |
"cell_type": "code",
|
20845 |
-
"execution_count":
|
20846 |
-
"id": "
|
20847 |
"metadata": {},
|
20848 |
"outputs": [
|
20849 |
{
|
@@ -20858,12 +20431,12 @@
|
|
20858 |
{
|
20859 |
"data": {
|
20860 |
"application/vnd.jupyter.widget-view+json": {
|
20861 |
-
"model_id": "
|
20862 |
"version_major": 2,
|
20863 |
"version_minor": 0
|
20864 |
},
|
20865 |
"text/plain": [
|
20866 |
-
"Download file pytorch_model.bin: 0%| |
|
20867 |
]
|
20868 |
},
|
20869 |
"metadata": {},
|
@@ -20872,7 +20445,35 @@
|
|
20872 |
{
|
20873 |
"data": {
|
20874 |
"application/vnd.jupyter.widget-view+json": {
|
20875 |
-
"model_id": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20876 |
"version_major": 2,
|
20877 |
"version_minor": 0
|
20878 |
},
|
@@ -20890,6 +20491,39 @@
|
|
20890 |
"Configuration saved in vitouphy/xls-r-300m-km/config.json\n",
|
20891 |
"Model weights saved in vitouphy/xls-r-300m-km/pytorch_model.bin\n"
|
20892 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20893 |
}
|
20894 |
],
|
20895 |
"source": [
|
@@ -20898,8 +20532,8 @@
|
|
20898 |
},
|
20899 |
{
|
20900 |
"cell_type": "code",
|
20901 |
-
"execution_count":
|
20902 |
-
"id": "
|
20903 |
"metadata": {},
|
20904 |
"outputs": [
|
20905 |
{
|
@@ -20920,7 +20554,7 @@
|
|
20920 |
{
|
20921 |
"cell_type": "code",
|
20922 |
"execution_count": null,
|
20923 |
-
"id": "
|
20924 |
"metadata": {},
|
20925 |
"outputs": [],
|
20926 |
"source": []
|
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
"execution_count": 1,
|
6 |
+
"id": "bff05704",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
|
|
16 |
{
|
17 |
"cell_type": "code",
|
18 |
"execution_count": null,
|
19 |
+
"id": "9637cdfd",
|
20 |
"metadata": {
|
21 |
"collapsed": true,
|
22 |
"jupyter": {
|
|
|
19167 |
},
|
19168 |
{
|
19169 |
"cell_type": "markdown",
|
19170 |
+
"id": "b11b1d53",
|
19171 |
"metadata": {},
|
19172 |
"source": [
|
19173 |
"### Load KH Data"
|
|
|
19176 |
{
|
19177 |
"cell_type": "code",
|
19178 |
"execution_count": 4,
|
19179 |
+
"id": "f35b6d68",
|
19180 |
"metadata": {},
|
19181 |
"outputs": [],
|
19182 |
"source": [
|
|
|
19197 |
{
|
19198 |
"cell_type": "code",
|
19199 |
"execution_count": 5,
|
19200 |
+
"id": "a0b561cb",
|
19201 |
"metadata": {},
|
19202 |
"outputs": [
|
19203 |
{
|
|
|
19307 |
{
|
19308 |
"cell_type": "code",
|
19309 |
"execution_count": 6,
|
19310 |
+
"id": "c8ae4532",
|
19311 |
"metadata": {},
|
19312 |
"outputs": [],
|
19313 |
"source": [
|
|
|
19321 |
},
|
19322 |
{
|
19323 |
"cell_type": "markdown",
|
19324 |
+
"id": "4649ca2b",
|
19325 |
"metadata": {},
|
19326 |
"source": [
|
19327 |
"### Clean Up the Text"
|
|
|
19330 |
{
|
19331 |
"cell_type": "code",
|
19332 |
"execution_count": 6,
|
19333 |
+
"id": "363283a2",
|
19334 |
"metadata": {},
|
19335 |
"outputs": [],
|
19336 |
"source": [
|
|
|
19346 |
{
|
19347 |
"cell_type": "code",
|
19348 |
"execution_count": 7,
|
19349 |
+
"id": "51f70aa8",
|
19350 |
"metadata": {
|
19351 |
"collapsed": true,
|
19352 |
"jupyter": {
|
|
|
19402 |
{
|
19403 |
"cell_type": "code",
|
19404 |
"execution_count": 7,
|
19405 |
+
"id": "fbc089d7",
|
19406 |
"metadata": {},
|
19407 |
"outputs": [
|
19408 |
{
|
|
|
19423 |
},
|
19424 |
{
|
19425 |
"cell_type": "markdown",
|
19426 |
+
"id": "af02801f",
|
19427 |
"metadata": {},
|
19428 |
"source": [
|
19429 |
"### Build Character"
|
|
|
19432 |
{
|
19433 |
"cell_type": "code",
|
19434 |
"execution_count": 8,
|
19435 |
+
"id": "a9e58b43",
|
19436 |
"metadata": {},
|
19437 |
"outputs": [
|
19438 |
{
|
|
|
19480 |
{
|
19481 |
"cell_type": "code",
|
19482 |
"execution_count": 9,
|
19483 |
+
"id": "4480543c",
|
19484 |
"metadata": {},
|
19485 |
"outputs": [],
|
19486 |
"source": [
|
|
|
19491 |
{
|
19492 |
"cell_type": "code",
|
19493 |
"execution_count": 10,
|
19494 |
+
"id": "99857f4d",
|
19495 |
"metadata": {},
|
19496 |
"outputs": [
|
19497 |
{
|
|
|
19509 |
{
|
19510 |
"cell_type": "code",
|
19511 |
"execution_count": 11,
|
19512 |
+
"id": "bec53215",
|
19513 |
"metadata": {},
|
19514 |
"outputs": [
|
19515 |
{
|
|
|
19536 |
{
|
19537 |
"cell_type": "code",
|
19538 |
"execution_count": 12,
|
19539 |
+
"id": "cf58f8a4",
|
19540 |
"metadata": {},
|
19541 |
"outputs": [
|
19542 |
{
|
|
|
19554 |
{
|
19555 |
"cell_type": "code",
|
19556 |
"execution_count": 13,
|
19557 |
+
"id": "0c621a15",
|
19558 |
"metadata": {},
|
19559 |
"outputs": [],
|
19560 |
"source": [
|
|
|
19565 |
},
|
19566 |
{
|
19567 |
"cell_type": "markdown",
|
19568 |
+
"id": "bb8b5aa3",
|
19569 |
"metadata": {},
|
19570 |
"source": [
|
19571 |
"# Tokenizer"
|
|
|
19574 |
{
|
19575 |
"cell_type": "code",
|
19576 |
"execution_count": 14,
|
19577 |
+
"id": "dc1c1984",
|
19578 |
"metadata": {},
|
19579 |
"outputs": [],
|
19580 |
"source": [
|
|
|
19585 |
},
|
19586 |
{
|
19587 |
"cell_type": "code",
|
19588 |
+
"execution_count": 63,
|
19589 |
+
"id": "6324377d",
|
19590 |
"metadata": {},
|
19591 |
"outputs": [
|
19592 |
{
|
|
|
19598 |
"loading file ./tokenizer_config.json\n",
|
19599 |
"loading file ./added_tokens.json\n",
|
19600 |
"loading file ./special_tokens_map.json\n",
|
19601 |
+
"loading file None\n",
|
19602 |
+
"Adding <s> to the vocabulary\n",
|
19603 |
+
"Adding </s> to the vocabulary\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19604 |
]
|
19605 |
}
|
19606 |
],
|
|
|
19613 |
{
|
19614 |
"cell_type": "code",
|
19615 |
"execution_count": 26,
|
19616 |
+
"id": "f971580d",
|
19617 |
"metadata": {},
|
19618 |
"outputs": [],
|
19619 |
"source": [
|
|
|
19630 |
{
|
19631 |
"cell_type": "code",
|
19632 |
"execution_count": 27,
|
19633 |
+
"id": "d0368c7a",
|
19634 |
"metadata": {},
|
19635 |
"outputs": [
|
19636 |
{
|
|
|
19670 |
{
|
19671 |
"cell_type": "code",
|
19672 |
"execution_count": 17,
|
19673 |
+
"id": "62e9d0c6",
|
19674 |
"metadata": {},
|
19675 |
"outputs": [],
|
19676 |
"source": [
|
|
|
19681 |
{
|
19682 |
"cell_type": "code",
|
19683 |
"execution_count": 18,
|
19684 |
+
"id": "f642a861",
|
19685 |
"metadata": {},
|
19686 |
"outputs": [
|
19687 |
{
|
|
|
19706 |
{
|
19707 |
"cell_type": "code",
|
19708 |
"execution_count": 19,
|
19709 |
+
"id": "0c756a07",
|
19710 |
"metadata": {},
|
19711 |
"outputs": [
|
19712 |
{
|
|
|
19753 |
{
|
19754 |
"cell_type": "code",
|
19755 |
"execution_count": 20,
|
19756 |
+
"id": "d2a5374c",
|
19757 |
"metadata": {},
|
19758 |
"outputs": [],
|
19759 |
"source": [
|
|
|
19775 |
{
|
19776 |
"cell_type": "code",
|
19777 |
"execution_count": 22,
|
19778 |
+
"id": "9c3697ba",
|
19779 |
"metadata": {},
|
19780 |
"outputs": [],
|
19781 |
"source": [
|
|
|
19786 |
{
|
19787 |
"cell_type": "code",
|
19788 |
"execution_count": 41,
|
19789 |
+
"id": "d5bd0662",
|
19790 |
"metadata": {},
|
19791 |
"outputs": [],
|
19792 |
"source": [
|
|
|
19798 |
{
|
19799 |
"cell_type": "code",
|
19800 |
"execution_count": 25,
|
19801 |
+
"id": "639dd5a7",
|
19802 |
"metadata": {},
|
19803 |
"outputs": [],
|
19804 |
"source": [
|
|
|
19858 |
{
|
19859 |
"cell_type": "code",
|
19860 |
"execution_count": 26,
|
19861 |
+
"id": "c4fe1643",
|
19862 |
"metadata": {},
|
19863 |
"outputs": [],
|
19864 |
"source": [
|
|
|
19868 |
{
|
19869 |
"cell_type": "code",
|
19870 |
"execution_count": 27,
|
19871 |
+
"id": "9fb388e3",
|
19872 |
"metadata": {},
|
19873 |
"outputs": [],
|
19874 |
"source": [
|
|
|
19878 |
},
|
19879 |
{
|
19880 |
"cell_type": "code",
|
19881 |
+
"execution_count": 64,
|
19882 |
+
"id": "96611455",
|
19883 |
"metadata": {},
|
19884 |
"outputs": [],
|
19885 |
"source": [
|
|
|
19892 |
" pred_str = tokenizer.batch_decode(pred_ids)\n",
|
19893 |
" label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)\n",
|
19894 |
"\n",
|
19895 |
+
"# print(\"pred : \", pred_ids[0])\n",
|
19896 |
+
"# print(\"label: \", pred.label_ids[0])\n",
|
19897 |
+
"# print(\"-----------------\")\n",
|
19898 |
" \n",
|
19899 |
" wer = wer_metric.compute(predictions=pred_str, references=label_str)\n",
|
19900 |
"\n",
|
|
|
19903 |
},
|
19904 |
{
|
19905 |
"cell_type": "code",
|
19906 |
+
"execution_count": 66,
|
19907 |
+
"id": "bb429520",
|
19908 |
"metadata": {
|
19909 |
"collapsed": true,
|
19910 |
"jupyter": {
|
|
|
19916 |
"name": "stderr",
|
19917 |
"output_type": "stream",
|
19918 |
"text": [
|
19919 |
+
"loading configuration file checkpoint-4000/config.json\n",
|
19920 |
"Model config Wav2Vec2Config {\n",
|
19921 |
+
" \"_name_or_path\": \"facebook/wav2vec2-xls-r-300m\",\n",
|
19922 |
" \"activation_dropout\": 0.0,\n",
|
19923 |
" \"adapter_kernel_size\": 3,\n",
|
19924 |
" \"adapter_stride\": 2,\n",
|
19925 |
" \"add_adapter\": false,\n",
|
19926 |
" \"apply_spec_augment\": true,\n",
|
19927 |
" \"architectures\": [\n",
|
19928 |
+
" \"Wav2Vec2ForCTC\"\n",
|
19929 |
" ],\n",
|
19930 |
" \"attention_dropout\": 0.1,\n",
|
19931 |
" \"bos_token_id\": 1,\n",
|
|
|
20026 |
" \"xvector_output_dim\": 512\n",
|
20027 |
"}\n",
|
20028 |
"\n",
|
20029 |
+
"loading weights file checkpoint-4000/pytorch_model.bin\n",
|
20030 |
+
"All model checkpoint weights were used when initializing Wav2Vec2ForCTC.\n",
|
20031 |
+
"\n",
|
20032 |
+
"All the weights of Wav2Vec2ForCTC were initialized from the model checkpoint at checkpoint-4000.\n",
|
20033 |
+
"If your task is similar to the task the model of the checkpoint was trained on, you can already use Wav2Vec2ForCTC for predictions without further training.\n"
|
|
|
20034 |
]
|
20035 |
}
|
20036 |
],
|
|
|
20038 |
"from transformers import Wav2Vec2ForCTC\n",
|
20039 |
"\n",
|
20040 |
"model = Wav2Vec2ForCTC.from_pretrained(\n",
|
20041 |
+
"# \"facebook/wav2vec2-xls-r-300m\", \n",
|
20042 |
+
" \"checkpoint-4000\",\n",
|
20043 |
" attention_dropout=0.1,\n",
|
20044 |
" layerdrop=0.0,\n",
|
20045 |
" feat_proj_dropout=0.0,\n",
|
|
|
20055 |
},
|
20056 |
{
|
20057 |
"cell_type": "code",
|
20058 |
+
"execution_count": 68,
|
20059 |
+
"id": "ffcd9012",
|
20060 |
"metadata": {},
|
20061 |
"outputs": [],
|
20062 |
"source": [
|
|
|
20065 |
},
|
20066 |
{
|
20067 |
"cell_type": "code",
|
20068 |
+
"execution_count": 69,
|
20069 |
+
"id": "b07418cf",
|
20070 |
"metadata": {},
|
20071 |
"outputs": [
|
20072 |
{
|
|
|
20094 |
" eval_steps=400,\n",
|
20095 |
" logging_steps=100,\n",
|
20096 |
" learning_rate=5e-5,\n",
|
20097 |
+
" warmup_steps=100,\n",
|
20098 |
" save_total_limit=3,\n",
|
20099 |
" load_best_model_at_end=True\n",
|
20100 |
")"
|
|
|
20102 |
},
|
20103 |
{
|
20104 |
"cell_type": "code",
|
20105 |
+
"execution_count": 70,
|
20106 |
+
"id": "7776cd7d",
|
20107 |
"metadata": {},
|
20108 |
"outputs": [
|
20109 |
{
|
|
|
20130 |
},
|
20131 |
{
|
20132 |
"cell_type": "code",
|
20133 |
+
"execution_count": 71,
|
20134 |
+
"id": "ac33ed4c",
|
20135 |
+
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
20136 |
"outputs": [
|
20137 |
{
|
20138 |
"name": "stderr",
|
|
|
20157 |
" <div>\n",
|
20158 |
" \n",
|
20159 |
" <progress value='4050' max='4050' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
20160 |
+
" [4050/4050 2:16:09, Epoch 49/50]\n",
|
20161 |
" </div>\n",
|
20162 |
" <table border=\"1\" class=\"dataframe\">\n",
|
20163 |
" <thead>\n",
|
|
|
20171 |
" <tbody>\n",
|
20172 |
" <tr>\n",
|
20173 |
" <td>400</td>\n",
|
20174 |
+
" <td>1.382900</td>\n",
|
20175 |
+
" <td>0.429020</td>\n",
|
20176 |
+
" <td>0.479627</td>\n",
|
20177 |
" </tr>\n",
|
20178 |
" <tr>\n",
|
20179 |
" <td>800</td>\n",
|
20180 |
+
" <td>1.315600</td>\n",
|
20181 |
+
" <td>0.385632</td>\n",
|
20182 |
+
" <td>0.447419</td>\n",
|
20183 |
" </tr>\n",
|
20184 |
" <tr>\n",
|
20185 |
" <td>1200</td>\n",
|
20186 |
+
" <td>1.239600</td>\n",
|
20187 |
+
" <td>0.359977</td>\n",
|
20188 |
+
" <td>0.430733</td>\n",
|
20189 |
" </tr>\n",
|
20190 |
" <tr>\n",
|
20191 |
" <td>1600</td>\n",
|
20192 |
+
" <td>1.144400</td>\n",
|
20193 |
+
" <td>0.342276</td>\n",
|
20194 |
+
" <td>0.417928</td>\n",
|
20195 |
" </tr>\n",
|
20196 |
" <tr>\n",
|
20197 |
" <td>2000</td>\n",
|
20198 |
+
" <td>1.097900</td>\n",
|
20199 |
+
" <td>0.337029</td>\n",
|
20200 |
+
" <td>0.388436</td>\n",
|
20201 |
" </tr>\n",
|
20202 |
" <tr>\n",
|
20203 |
" <td>2400</td>\n",
|
20204 |
+
" <td>1.071400</td>\n",
|
20205 |
+
" <td>0.323725</td>\n",
|
20206 |
+
" <td>0.370974</td>\n",
|
20207 |
" </tr>\n",
|
20208 |
" <tr>\n",
|
20209 |
" <td>2800</td>\n",
|
20210 |
+
" <td>1.044200</td>\n",
|
20211 |
+
" <td>0.333624</td>\n",
|
20212 |
+
" <td>0.368258</td>\n",
|
20213 |
" </tr>\n",
|
20214 |
" <tr>\n",
|
20215 |
" <td>3200</td>\n",
|
20216 |
+
" <td>1.049200</td>\n",
|
20217 |
+
" <td>0.316629</td>\n",
|
20218 |
+
" <td>0.352736</td>\n",
|
20219 |
" </tr>\n",
|
20220 |
" <tr>\n",
|
20221 |
" <td>3600</td>\n",
|
20222 |
+
" <td>1.028400</td>\n",
|
20223 |
+
" <td>0.317763</td>\n",
|
20224 |
+
" <td>0.356616</td>\n",
|
20225 |
" </tr>\n",
|
20226 |
" <tr>\n",
|
20227 |
" <td>4000</td>\n",
|
20228 |
+
" <td>1.030200</td>\n",
|
20229 |
+
" <td>0.314151</td>\n",
|
20230 |
+
" <td>0.351184</td>\n",
|
20231 |
" </tr>\n",
|
20232 |
" </tbody>\n",
|
20233 |
"</table><p>"
|
|
|
20246 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20247 |
"***** Running Evaluation *****\n",
|
20248 |
" Num examples = 291\n",
|
20249 |
+
" Batch size = 8\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20250 |
"Saving model checkpoint to ./checkpoint-400\n",
|
20251 |
"Configuration saved in ./checkpoint-400/config.json\n",
|
20252 |
"Model weights saved in ./checkpoint-400/pytorch_model.bin\n",
|
20253 |
"Configuration saved in ./checkpoint-400/preprocessor_config.json\n",
|
20254 |
+
"Deleting older checkpoint [checkpoint-3200] due to args.save_total_limit\n",
|
20255 |
+
"Deleting older checkpoint [checkpoint-3600] due to args.save_total_limit\n",
|
20256 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20257 |
"***** Running Evaluation *****\n",
|
20258 |
" Num examples = 291\n",
|
20259 |
+
" Batch size = 8\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20260 |
"Saving model checkpoint to ./checkpoint-800\n",
|
20261 |
"Configuration saved in ./checkpoint-800/config.json\n",
|
20262 |
"Model weights saved in ./checkpoint-800/pytorch_model.bin\n",
|
20263 |
"Configuration saved in ./checkpoint-800/preprocessor_config.json\n",
|
20264 |
+
"Deleting older checkpoint [checkpoint-4000-prev-best] due to args.save_total_limit\n",
|
20265 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20266 |
"***** Running Evaluation *****\n",
|
20267 |
" Num examples = 291\n",
|
20268 |
+
" Batch size = 8\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20269 |
"Saving model checkpoint to ./checkpoint-1200\n",
|
20270 |
"Configuration saved in ./checkpoint-1200/config.json\n",
|
20271 |
"Model weights saved in ./checkpoint-1200/pytorch_model.bin\n",
|
20272 |
"Configuration saved in ./checkpoint-1200/preprocessor_config.json\n",
|
20273 |
+
"Deleting older checkpoint [checkpoint-4000] due to args.save_total_limit\n",
|
20274 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20275 |
"***** Running Evaluation *****\n",
|
20276 |
" Num examples = 291\n",
|
20277 |
+
" Batch size = 8\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20278 |
"Saving model checkpoint to ./checkpoint-1600\n",
|
20279 |
"Configuration saved in ./checkpoint-1600/config.json\n",
|
20280 |
"Model weights saved in ./checkpoint-1600/pytorch_model.bin\n",
|
|
|
20283 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20284 |
"***** Running Evaluation *****\n",
|
20285 |
" Num examples = 291\n",
|
20286 |
+
" Batch size = 8\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20287 |
"Saving model checkpoint to ./checkpoint-2000\n",
|
20288 |
"Configuration saved in ./checkpoint-2000/config.json\n",
|
20289 |
"Model weights saved in ./checkpoint-2000/pytorch_model.bin\n",
|
|
|
20292 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20293 |
"***** Running Evaluation *****\n",
|
20294 |
" Num examples = 291\n",
|
20295 |
+
" Batch size = 8\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20296 |
"Saving model checkpoint to ./checkpoint-2400\n",
|
20297 |
"Configuration saved in ./checkpoint-2400/config.json\n",
|
20298 |
"Model weights saved in ./checkpoint-2400/pytorch_model.bin\n",
|
|
|
20301 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20302 |
"***** Running Evaluation *****\n",
|
20303 |
" Num examples = 291\n",
|
20304 |
+
" Batch size = 8\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20305 |
"Saving model checkpoint to ./checkpoint-2800\n",
|
20306 |
"Configuration saved in ./checkpoint-2800/config.json\n",
|
20307 |
"Model weights saved in ./checkpoint-2800/pytorch_model.bin\n",
|
|
|
20310 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20311 |
"***** Running Evaluation *****\n",
|
20312 |
" Num examples = 291\n",
|
20313 |
+
" Batch size = 8\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20314 |
"Saving model checkpoint to ./checkpoint-3200\n",
|
20315 |
"Configuration saved in ./checkpoint-3200/config.json\n",
|
20316 |
"Model weights saved in ./checkpoint-3200/pytorch_model.bin\n",
|
|
|
20319 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20320 |
"***** Running Evaluation *****\n",
|
20321 |
" Num examples = 291\n",
|
20322 |
+
" Batch size = 8\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20323 |
"Saving model checkpoint to ./checkpoint-3600\n",
|
20324 |
"Configuration saved in ./checkpoint-3600/config.json\n",
|
20325 |
"Model weights saved in ./checkpoint-3600/pytorch_model.bin\n",
|
|
|
20328 |
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
20329 |
"***** Running Evaluation *****\n",
|
20330 |
" Num examples = 291\n",
|
20331 |
+
" Batch size = 8\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20332 |
"Saving model checkpoint to ./checkpoint-4000\n",
|
20333 |
"Configuration saved in ./checkpoint-4000/config.json\n",
|
20334 |
"Model weights saved in ./checkpoint-4000/pytorch_model.bin\n",
|
|
|
20339 |
"Training completed. Do not forget to share your model on huggingface.co/models =)\n",
|
20340 |
"\n",
|
20341 |
"\n",
|
20342 |
+
"Loading best model from ./checkpoint-4000 (score: 0.3141506016254425).\n"
|
20343 |
]
|
20344 |
},
|
20345 |
{
|
20346 |
"data": {
|
20347 |
"text/plain": [
|
20348 |
+
"TrainOutput(global_step=4050, training_loss=1.1567209813624253, metrics={'train_runtime': 8173.6251, 'train_samples_per_second': 15.997, 'train_steps_per_second': 0.495, 'total_flos': 1.9735608328149316e+19, 'train_loss': 1.1567209813624253, 'epoch': 49.99})"
|
20349 |
]
|
20350 |
},
|
20351 |
+
"execution_count": 71,
|
20352 |
"metadata": {},
|
20353 |
"output_type": "execute_result"
|
20354 |
}
|
|
|
20360 |
{
|
20361 |
"cell_type": "code",
|
20362 |
"execution_count": 57,
|
20363 |
+
"id": "19b3350f",
|
20364 |
"metadata": {},
|
20365 |
"outputs": [
|
20366 |
{
|
|
|
20379 |
},
|
20380 |
{
|
20381 |
"cell_type": "code",
|
20382 |
+
"execution_count": 72,
|
20383 |
+
"id": "724e14ef",
|
20384 |
"metadata": {},
|
20385 |
"outputs": [],
|
20386 |
"source": [
|
|
|
20396 |
},
|
20397 |
{
|
20398 |
"cell_type": "code",
|
20399 |
+
"execution_count": 73,
|
20400 |
+
"id": "75b87f11",
|
20401 |
"metadata": {},
|
20402 |
"outputs": [
|
20403 |
{
|
|
|
20415 |
},
|
20416 |
{
|
20417 |
"cell_type": "code",
|
20418 |
+
"execution_count": 74,
|
20419 |
+
"id": "9e4a2ec9",
|
20420 |
"metadata": {},
|
20421 |
"outputs": [
|
20422 |
{
|
|
|
20431 |
{
|
20432 |
"data": {
|
20433 |
"application/vnd.jupyter.widget-view+json": {
|
20434 |
+
"model_id": "ae4aa0641113454c801089fa2dbd6777",
|
20435 |
"version_major": 2,
|
20436 |
"version_minor": 0
|
20437 |
},
|
20438 |
"text/plain": [
|
20439 |
+
"Download file pytorch_model.bin: 0%| | 2.83k/1.18G [00:00<?, ?B/s]"
|
20440 |
]
|
20441 |
},
|
20442 |
"metadata": {},
|
|
|
20445 |
{
|
20446 |
"data": {
|
20447 |
"application/vnd.jupyter.widget-view+json": {
|
20448 |
+
"model_id": "9a3129d18855473ba7da0f290f26419b",
|
20449 |
+
"version_major": 2,
|
20450 |
+
"version_minor": 0
|
20451 |
+
},
|
20452 |
+
"text/plain": [
|
20453 |
+
"Download file training_args.bin: 63%|######2 | 1.84k/2.92k [00:00<?, ?B/s]"
|
20454 |
+
]
|
20455 |
+
},
|
20456 |
+
"metadata": {},
|
20457 |
+
"output_type": "display_data"
|
20458 |
+
},
|
20459 |
+
{
|
20460 |
+
"data": {
|
20461 |
+
"application/vnd.jupyter.widget-view+json": {
|
20462 |
+
"model_id": "dabccfa9f14045919cf70a905afb5506",
|
20463 |
+
"version_major": 2,
|
20464 |
+
"version_minor": 0
|
20465 |
+
},
|
20466 |
+
"text/plain": [
|
20467 |
+
"Clean file training_args.bin: 34%|###4 | 1.00k/2.92k [00:00<?, ?B/s]"
|
20468 |
+
]
|
20469 |
+
},
|
20470 |
+
"metadata": {},
|
20471 |
+
"output_type": "display_data"
|
20472 |
+
},
|
20473 |
+
{
|
20474 |
+
"data": {
|
20475 |
+
"application/vnd.jupyter.widget-view+json": {
|
20476 |
+
"model_id": "ee7e633b1e784625b2d3695176f6c0f2",
|
20477 |
"version_major": 2,
|
20478 |
"version_minor": 0
|
20479 |
},
|
|
|
20491 |
"Configuration saved in vitouphy/xls-r-300m-km/config.json\n",
|
20492 |
"Model weights saved in vitouphy/xls-r-300m-km/pytorch_model.bin\n"
|
20493 |
]
|
20494 |
+
},
|
20495 |
+
{
|
20496 |
+
"data": {
|
20497 |
+
"application/vnd.jupyter.widget-view+json": {
|
20498 |
+
"model_id": "9738e4743ca3470f863dfd4d85f6e411",
|
20499 |
+
"version_major": 2,
|
20500 |
+
"version_minor": 0
|
20501 |
+
},
|
20502 |
+
"text/plain": [
|
20503 |
+
"Upload file pytorch_model.bin: 0%| | 3.39k/1.18G [00:00<?, ?B/s]"
|
20504 |
+
]
|
20505 |
+
},
|
20506 |
+
"metadata": {},
|
20507 |
+
"output_type": "display_data"
|
20508 |
+
},
|
20509 |
+
{
|
20510 |
+
"name": "stderr",
|
20511 |
+
"output_type": "stream",
|
20512 |
+
"text": [
|
20513 |
+
"To https://huggingface.co/vitouphy/xls-r-300m-km\n",
|
20514 |
+
" 6f203d5..74be6ec main -> main\n",
|
20515 |
+
"\n"
|
20516 |
+
]
|
20517 |
+
},
|
20518 |
+
{
|
20519 |
+
"data": {
|
20520 |
+
"text/plain": [
|
20521 |
+
"'https://huggingface.co/vitouphy/xls-r-300m-km/commit/74be6ece8cca85ef00972b1f3f88460217d0acf5'"
|
20522 |
+
]
|
20523 |
+
},
|
20524 |
+
"execution_count": 74,
|
20525 |
+
"metadata": {},
|
20526 |
+
"output_type": "execute_result"
|
20527 |
}
|
20528 |
],
|
20529 |
"source": [
|
|
|
20532 |
},
|
20533 |
{
|
20534 |
"cell_type": "code",
|
20535 |
+
"execution_count": 75,
|
20536 |
+
"id": "8c70b0b9",
|
20537 |
"metadata": {},
|
20538 |
"outputs": [
|
20539 |
{
|
|
|
20554 |
{
|
20555 |
"cell_type": "code",
|
20556 |
"execution_count": null,
|
20557 |
+
"id": "96cd8308",
|
20558 |
"metadata": {},
|
20559 |
"outputs": [],
|
20560 |
"source": []
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2991
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59beaed2af6d1171b371d53a9d0077d3ab22cd9f2392cf839539bb2e9f36d978
|
3 |
size 2991
|