--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1408 - Accuracy: 0.939 - F1: 0.9390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7839 | 1.0 | 250 | 0.2642 | 0.915 | 0.9155 | | 0.1986 | 2.0 | 500 | 0.1730 | 0.933 | 0.9328 | | 0.1352 | 3.0 | 750 | 0.1467 | 0.9395 | 0.9399 | | 0.1068 | 4.0 | 1000 | 0.1375 | 0.9375 | 0.9376 | | 0.0899 | 5.0 | 1250 | 0.1408 | 0.939 | 0.9390 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Tokenizers 0.19.1