vonewman commited on
Commit
3464b6c
1 Parent(s): 7d031b8

Training complete

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -1,6 +1,4 @@
1
  ---
2
- license: mit
3
- base_model: vonewman/xlm-roberta-base-finetuned-wolof
4
  tags:
5
  - generated_from_trainer
6
  metrics:
@@ -18,13 +16,13 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # wolof-finetuned-ner
20
 
21
- This model is a fine-tuned version of [vonewman/xlm-roberta-base-finetuned-wolof](https://huggingface.co/vonewman/xlm-roberta-base-finetuned-wolof) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.3539
24
- - Precision: 0.7798
25
  - Recall: 0.8912
26
- - F1: 0.8317
27
- - Accuracy: 0.9850
28
 
29
  ## Model description
30
 
@@ -49,15 +47,17 @@ The following hyperparameters were used during training:
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
- - num_epochs: 3
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | No log | 1.0 | 226 | 0.3879 | 0.7412 | 0.8571 | 0.7950 | 0.9834 |
59
- | No log | 2.0 | 452 | 0.3595 | 0.7378 | 0.8707 | 0.7988 | 0.9833 |
60
- | 0.5119 | 3.0 | 678 | 0.3539 | 0.7798 | 0.8912 | 0.8317 | 0.9850 |
 
 
61
 
62
 
63
  ### Framework versions
 
1
  ---
 
 
2
  tags:
3
  - generated_from_trainer
4
  metrics:
 
16
 
17
  # wolof-finetuned-ner
18
 
19
+ This model was trained from scratch on the None dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.3950
22
+ - Precision: 0.7821
23
  - Recall: 0.8912
24
+ - F1: 0.8331
25
+ - Accuracy: 0.9849
26
 
27
  ## Model description
28
 
 
47
  - seed: 42
48
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
  - lr_scheduler_type: linear
50
+ - num_epochs: 5
51
 
52
  ### Training results
53
 
54
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
55
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
56
+ | No log | 1.0 | 226 | 0.4169 | 0.7590 | 0.8571 | 0.8051 | 0.9842 |
57
+ | No log | 2.0 | 452 | 0.3715 | 0.7738 | 0.8844 | 0.8254 | 0.9856 |
58
+ | 0.5031 | 3.0 | 678 | 0.3746 | 0.7550 | 0.9014 | 0.8217 | 0.9840 |
59
+ | 0.5031 | 4.0 | 904 | 0.3983 | 0.7651 | 0.8639 | 0.8115 | 0.9840 |
60
+ | 0.0962 | 5.0 | 1130 | 0.3950 | 0.7821 | 0.8912 | 0.8331 | 0.9849 |
61
 
62
 
63
  ### Framework versions