Training complete
Browse files- README.md +14 -14
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -44,8 +44,8 @@ More information needed
|
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
- learning_rate: 2e-05
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
@@ -55,14 +55,14 @@ The following hyperparameters were used during training:
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
| 0.
|
61 |
|
62 |
|
63 |
### Framework versions
|
64 |
|
65 |
-
- Transformers 4.
|
66 |
-
- Pytorch 2.0.
|
67 |
-
- Datasets 2.
|
68 |
-
- Tokenizers 0.
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0781
|
24 |
+
- Precision: 0.8227
|
25 |
+
- Recall: 0.8367
|
26 |
+
- F1: 0.8297
|
27 |
+
- Accuracy: 0.9859
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 8
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 226 | 0.0955 | 0.7049 | 0.7313 | 0.7179 | 0.9806 |
|
59 |
+
| No log | 2.0 | 452 | 0.0744 | 0.7816 | 0.8401 | 0.8098 | 0.9850 |
|
60 |
+
| 0.1416 | 3.0 | 678 | 0.0781 | 0.8227 | 0.8367 | 0.8297 | 0.9859 |
|
61 |
|
62 |
|
63 |
### Framework versions
|
64 |
|
65 |
+
- Transformers 4.33.0
|
66 |
+
- Pytorch 2.0.0
|
67 |
+
- Datasets 2.1.0
|
68 |
+
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1109908201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4897622285a9045e7f5985dc8f5ac1955602c3e78ab521084ec07a5cdffb6f32
|
3 |
size 1109908201
|