Training complete
Browse files
README.md
CHANGED
@@ -1,8 +1,13 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
-
base_model:
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
|
|
6 |
model-index:
|
7 |
- name: wolof-finetuned-ner
|
8 |
results: []
|
@@ -13,10 +18,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
# wolof-finetuned-ner
|
15 |
|
16 |
-
This model is a fine-tuned version of [
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
-
-
|
|
|
|
|
|
|
20 |
|
21 |
## Model description
|
22 |
|
@@ -45,16 +53,16 @@ The following hyperparameters were used during training:
|
|
45 |
|
46 |
### Training results
|
47 |
|
48 |
-
| Training Loss | Epoch | Step | Validation Loss | F1
|
49 |
-
|
50 |
-
| No log | 1.0 | 226 | 0.
|
51 |
-
| No log | 2.0 | 452 | 0.
|
52 |
-
| 0.
|
53 |
|
54 |
|
55 |
### Framework versions
|
56 |
|
57 |
-
- Transformers 4.
|
58 |
-
- Pytorch 2.0.
|
59 |
-
- Datasets 2.
|
60 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
base_model: Davlan/afro-xlmr-base
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
model-index:
|
12 |
- name: wolof-finetuned-ner
|
13 |
results: []
|
|
|
18 |
|
19 |
# wolof-finetuned-ner
|
20 |
|
21 |
+
This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0719
|
24 |
+
- Precision: 0.7785
|
25 |
+
- Recall: 0.7891
|
26 |
+
- F1: 0.7838
|
27 |
+
- Accuracy: 0.9845
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 226 | 0.0899 | 0.6551 | 0.6395 | 0.6472 | 0.9778 |
|
59 |
+
| No log | 2.0 | 452 | 0.0742 | 0.7695 | 0.7721 | 0.7708 | 0.9831 |
|
60 |
+
| 0.1592 | 3.0 | 678 | 0.0719 | 0.7785 | 0.7891 | 0.7838 | 0.9845 |
|
61 |
|
62 |
|
63 |
### Framework versions
|
64 |
|
65 |
+
- Transformers 4.33.0
|
66 |
+
- Pytorch 2.0.0
|
67 |
+
- Datasets 2.1.0
|
68 |
+
- Tokenizers 0.13.3
|