vonewman commited on
Commit
d37487a
1 Parent(s): 4ed84c7

Training complete

Browse files
Files changed (1) hide show
  1. README.md +9 -11
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [vonewman/xlm-roberta-base-finetuned-wolof](https://huggingface.co/vonewman/xlm-roberta-base-finetuned-wolof) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.3982
24
- - Precision: 0.8104
25
- - Recall: 0.9014
26
- - F1: 0.8535
27
- - Accuracy: 0.9868
28
 
29
  ## Model description
30
 
@@ -49,17 +49,15 @@ The following hyperparameters were used during training:
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
- - num_epochs: 5
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | No log | 1.0 | 226 | 0.3440 | 0.8538 | 0.8741 | 0.8639 | 0.9884 |
59
- | No log | 2.0 | 452 | 0.4196 | 0.8317 | 0.8571 | 0.8442 | 0.9876 |
60
- | 0.0699 | 3.0 | 678 | 0.3951 | 0.8291 | 0.8912 | 0.8590 | 0.9878 |
61
- | 0.0699 | 4.0 | 904 | 0.3923 | 0.8270 | 0.8946 | 0.8595 | 0.9880 |
62
- | 0.032 | 5.0 | 1130 | 0.3982 | 0.8104 | 0.9014 | 0.8535 | 0.9868 |
63
 
64
 
65
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [vonewman/xlm-roberta-base-finetuned-wolof](https://huggingface.co/vonewman/xlm-roberta-base-finetuned-wolof) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.3539
24
+ - Precision: 0.7798
25
+ - Recall: 0.8912
26
+ - F1: 0.8317
27
+ - Accuracy: 0.9850
28
 
29
  ## Model description
30
 
 
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
+ - num_epochs: 3
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 226 | 0.3879 | 0.7412 | 0.8571 | 0.7950 | 0.9834 |
59
+ | No log | 2.0 | 452 | 0.3595 | 0.7378 | 0.8707 | 0.7988 | 0.9833 |
60
+ | 0.5119 | 3.0 | 678 | 0.3539 | 0.7798 | 0.8912 | 0.8317 | 0.9850 |
 
 
61
 
62
 
63
  ### Framework versions