--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: wolof-finetuned-ner results: [] --- # wolof-finetuned-ner This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3950 - Precision: 0.7821 - Recall: 0.8912 - F1: 0.8331 - Accuracy: 0.9849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 226 | 0.4169 | 0.7590 | 0.8571 | 0.8051 | 0.9842 | | No log | 2.0 | 452 | 0.3715 | 0.7738 | 0.8844 | 0.8254 | 0.9856 | | 0.5031 | 3.0 | 678 | 0.3746 | 0.7550 | 0.9014 | 0.8217 | 0.9840 | | 0.5031 | 4.0 | 904 | 0.3983 | 0.7651 | 0.8639 | 0.8115 | 0.9840 | | 0.0962 | 5.0 | 1130 | 0.3950 | 0.7821 | 0.8912 | 0.8331 | 0.9849 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3