--- license: mit base_model: vonewman/xlm-roberta-base-finetuned-wolof tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: wolof-finetuned-ner results: [] --- # wolof-finetuned-ner This model is a fine-tuned version of [vonewman/xlm-roberta-base-finetuned-wolof](https://huggingface.co/vonewman/xlm-roberta-base-finetuned-wolof) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3539 - Precision: 0.7798 - Recall: 0.8912 - F1: 0.8317 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 226 | 0.3879 | 0.7412 | 0.8571 | 0.7950 | 0.9834 | | No log | 2.0 | 452 | 0.3595 | 0.7378 | 0.8707 | 0.7988 | 0.9833 | | 0.5119 | 3.0 | 678 | 0.3539 | 0.7798 | 0.8912 | 0.8317 | 0.9850 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3