voxxer commited on
Commit
55c4863
1 Parent(s): 29c8c48

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -9
README.md CHANGED
@@ -5,9 +5,24 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
 
 
8
  model-index:
9
  - name: distil-ast-audioset-finetuned-gtzan
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -17,13 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [bookbot/distil-ast-audioset](https://huggingface.co/bookbot/distil-ast-audioset) on the GTZAN dataset.
19
  It achieves the following results on the evaluation set:
20
- - eval_loss: 2.0566
21
- - eval_accuracy: 0.55
22
- - eval_runtime: 10.1124
23
- - eval_samples_per_second: 9.889
24
- - eval_steps_per_second: 1.286
25
- - epoch: 19.0
26
- - step: 2147
27
 
28
  ## Model description
29
 
@@ -49,7 +59,23 @@ The following hyperparameters were used during training:
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
  - lr_scheduler_warmup_ratio: 0.1
52
- - num_epochs: 20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
  ### Framework versions
55
 
 
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
  model-index:
11
  - name: distil-ast-audioset-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.85
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [bookbot/distil-ast-audioset](https://huggingface.co/bookbot/distil-ast-audioset) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.6033
36
+ - Accuracy: 0.85
 
 
 
 
 
37
 
38
  ## Model description
39
 
 
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 10
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 1.2238 | 1.0 | 113 | 0.8023 | 0.75 |
69
+ | 0.6623 | 2.0 | 226 | 0.6611 | 0.79 |
70
+ | 0.9376 | 3.0 | 339 | 0.6243 | 0.81 |
71
+ | 0.3924 | 4.0 | 452 | 0.6123 | 0.85 |
72
+ | 0.2442 | 5.0 | 565 | 0.5983 | 0.83 |
73
+ | 0.1408 | 6.0 | 678 | 0.6270 | 0.84 |
74
+ | 0.2874 | 7.0 | 791 | 0.7019 | 0.78 |
75
+ | 0.0177 | 8.0 | 904 | 0.6482 | 0.83 |
76
+ | 0.036 | 9.0 | 1017 | 0.5012 | 0.88 |
77
+ | 0.0013 | 10.0 | 1130 | 0.6033 | 0.85 |
78
+
79
 
80
  ### Framework versions
81