update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
base_model: openai/whisper-tiny
|
6 |
+
tags:
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- PolyAI/minds14
|
10 |
+
metrics:
|
11 |
+
- wer
|
12 |
+
model-index:
|
13 |
+
- name: Whisper Tiny English
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Automatic Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: Minds 14
|
20 |
+
type: PolyAI/minds14
|
21 |
+
config: en-US
|
22 |
+
split: train
|
23 |
+
args: en-US
|
24 |
+
metrics:
|
25 |
+
- name: Wer
|
26 |
+
type: wer
|
27 |
+
value: 0.258610624635143
|
28 |
+
---
|
29 |
+
|
30 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
+
should probably proofread and complete it, then remove this comment. -->
|
32 |
+
|
33 |
+
# Whisper Tiny English
|
34 |
+
|
35 |
+
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Minds 14 dataset.
|
36 |
+
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.4154
|
38 |
+
- Wer Ortho: 0.2659
|
39 |
+
- Wer: 0.2586
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 1e-05
|
59 |
+
- train_batch_size: 32
|
60 |
+
- eval_batch_size: 16
|
61 |
+
- seed: 42
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: constant_with_warmup
|
64 |
+
- lr_scheduler_warmup_steps: 20
|
65 |
+
- training_steps: 100
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|
70 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
|
71 |
+
| 4.2901 | 0.33 | 5 | 4.2556 | 0.4220 | 0.2919 |
|
72 |
+
| 4.3552 | 0.67 | 10 | 3.7784 | 0.4226 | 0.2931 |
|
73 |
+
| 3.453 | 1.0 | 15 | 2.9546 | 0.4152 | 0.2907 |
|
74 |
+
| 2.9147 | 1.33 | 20 | 2.4090 | 0.3988 | 0.2931 |
|
75 |
+
| 2.3042 | 1.67 | 25 | 1.7869 | 0.3701 | 0.3001 |
|
76 |
+
| 1.6056 | 2.0 | 30 | 1.1284 | 0.3494 | 0.3012 |
|
77 |
+
| 0.988 | 2.33 | 35 | 0.6892 | 0.3860 | 0.3403 |
|
78 |
+
| 0.6605 | 2.67 | 40 | 0.5611 | 0.3128 | 0.2849 |
|
79 |
+
| 0.4645 | 3.0 | 45 | 0.4982 | 0.3091 | 0.2901 |
|
80 |
+
| 0.4884 | 3.33 | 50 | 0.4640 | 0.2963 | 0.2855 |
|
81 |
+
| 0.404 | 3.67 | 55 | 0.4453 | 0.2884 | 0.2814 |
|
82 |
+
| 0.4745 | 4.0 | 60 | 0.4268 | 0.2762 | 0.2697 |
|
83 |
+
| 0.303 | 4.33 | 65 | 0.4182 | 0.2829 | 0.2720 |
|
84 |
+
| 0.2717 | 4.67 | 70 | 0.4119 | 0.2829 | 0.2750 |
|
85 |
+
| 0.3464 | 5.0 | 75 | 0.4080 | 0.2860 | 0.2761 |
|
86 |
+
| 0.2193 | 5.33 | 80 | 0.4054 | 0.2823 | 0.2750 |
|
87 |
+
| 0.2138 | 5.67 | 85 | 0.4064 | 0.2762 | 0.2680 |
|
88 |
+
| 0.1571 | 6.0 | 90 | 0.4102 | 0.2799 | 0.2715 |
|
89 |
+
| 0.1398 | 6.33 | 95 | 0.4146 | 0.2768 | 0.2697 |
|
90 |
+
| 0.1523 | 6.67 | 100 | 0.4154 | 0.2659 | 0.2586 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.31.0
|
96 |
+
- Pytorch 2.0.1+cu118
|
97 |
+
- Datasets 2.14.4
|
98 |
+
- Tokenizers 0.13.3
|