voyzan commited on
Commit
fa736fa
1 Parent(s): 07ec21f

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.26 +/- 0.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:349fb6e6dcd20279a9d0eb9a2a3d4fde4471ed17902ce08e86b64115a29657ee
3
+ size 108221
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a94e3d668c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7a94e3d6ccc0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1693958397816195545,
28
+ "learning_rate": 0.001,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfm0Mv/0r3T49t6U+nkxgv+6xrT+ULKy/5Y+0P9hdpT8VPVq/XVFlv067XT/vhay/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVXVyv7ATzj/jCwc/VBYPPvROCz8Os3u/VymZP1TVIT9X75a/AZXBvz16Ej/4GZG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB+bQy//SvdPj23pT44nze/e/3NP98BYD+eTGC/7rGtP5QsrL/N2lG/S8aBP7gqcr/lj7Q/2F2lPxU9Wr+ogrE9GeA+P/3Y0L9dUWW/TrtdP++FrL/T3m+/UJCXvclId7+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-0.5485457 0.43197623 0.32366362]\n [-0.8761691 1.3569925 -1.3451104 ]\n [ 1.4106413 1.2919264 -0.85249454]\n [-0.89577276 0.8661393 -1.3478373 ]]",
34
+ "desired_goal": "[[-0.94710284 1.6099758 0.5275251 ]\n [ 0.13973361 0.5441735 -0.9832009 ]\n [ 1.1965741 0.6321614 -1.1791791 ]\n [-1.5123597 0.5721777 -1.133605 ]]",
35
+ "observation": "[[-0.5485457 0.43197623 0.32366362 -0.71727324 1.6092981 0.87502855]\n [-0.8761691 1.3569925 -1.3451104 -0.8197449 1.0138639 -0.94596434]\n [ 1.4106413 1.2919264 -0.85249454 0.08667499 0.74560696 -1.631622 ]\n [-0.89577276 0.8661393 -1.3478373 -0.9369938 -0.07400572 -0.96595436]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHBX6PDj3ZL3+Y1c92+0FPlhFdD3Vsdk9nS9cvdDrDL70sx89PrELvYY6yr0Vo1U+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.03052764 -0.05589983 0.05258559]\n [ 0.13079016 0.05963644 0.10629622]\n [-0.05375635 -0.1376183 0.03898998]\n [-0.03410458 -0.09874444 0.20862992]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": true,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9ClSCOFQEaMAWyUSwOMAXSUR0C3bDGuX/o8dX2UKGgGR7/W8g6ltTDPaAdLBGgIR0C3a9XOSntOdX2UKGgGR7/ZZIxxkupTaAdLBGgIR0C3bBZv99+gdX2UKGgGR7/RF7D2rXDnaAdLA2gIR0C3a/dfoicHdX2UKGgGR7/Gakyk9ECvaAdLA2gIR0C3bDd0FKTTdX2UKGgGR7/Bcv/R3NcGaAdLAmgIR0C3bBqIrOJMdX2UKGgGR7/QpUgjhUBGaAdLA2gIR0C3a9wRsdkrdX2UKGgGR7+oEQoTfzjFaAdLAWgIR0C3bBy+xnnMdX2UKGgGR7/UyksSTQmeaAdLA2gIR0C3a/2pZOi4dX2UKGgGR7/XnxJ/XoTxaAdLBGgIR0C3bEDkIX0odX2UKGgGR7/NuuzQeFL4aAdLA2gIR0C3a+NSIgvEdX2UKGgGR7/Odf9gnc+JaAdLA2gIR0C3bCP73wkPdX2UKGgGR7/JWUbDMvAXaAdLA2gIR0C3bATpkf9xdX2UKGgGR7+Y9ovi97F9aAdLAWgIR0C3a+V0YCQtdX2UKGgGR7+4Tj/+85CGaAdLAmgIR0C3bCf7N0NjdX2UKGgGR7+35LytmtheaAdLAmgIR0C3a+lzEJjUdX2UKGgGR7/WR3u/k/8maAdLBGgIR0C3bEkNBnjAdX2UKGgGR7/C3HaN+9amaAdLA2gIR0C3bAr0OEuhdX2UKGgGR7+d43WFvhqCaAdLAWgIR0C3a+uLJjlQdX2UKGgGR7+lqQA+6iCbaAdLAWgIR0C3a+2oegctdX2UKGgGR7/ONQ0oBq9HaAdLA2gIR0C3bC5taY/ndX2UKGgGR7+imj0th/iHaAdLAWgIR0C3a+/ShJyydX2UKGgGR7/Rh8pkPMB7aAdLA2gIR0C3bE+DOC5FdX2UKGgGR7/XwW3z+WGAaAdLBGgIR0C3bBR1PnB+dX2UKGgGR7/GHsTnJT2naAdLA2gIR0C3bFZlOGj9dX2UKGgGR7/U+7Dl5nlGaAdLBGgIR0C3bDeM6zVudX2UKGgGR7/W13dKujh2aAdLBGgIR0C3a/j1bqyGdX2UKGgGR7/LDRc/t6X0aAdLA2gIR0C3bBpeRgZ1dX2UKGgGR7/LjzZpSJj2aAdLA2gIR0C3bFxYvFm4dX2UKGgGR7/MqFRHf/FSaAdLA2gIR0C3bD2F8G9pdX2UKGgGR7/NR5TqB3A3aAdLA2gIR0C3bCBuwX67dX2UKGgGR7/XoM8YAKfGaAdLBGgIR0C3bAD7IkqudX2UKGgGR7+/UCq6vq1PaAdLAmgIR0C3bEGdmQKbdX2UKGgGR7/K9s7+1jRVaAdLA2gIR0C3bGPFFUhndX2UKGgGR7+ZSvTw2ETQaAdLAWgIR0C3bETwH7gsdX2UKGgGR7/Qew9q1w5vaAdLA2gIR0C3bCfGACnxdX2UKGgGR7/LRMN+b3GoaAdLA2gIR0C3bAhltj0+dX2UKGgGR7+0tnPE87p3aAdLAmgIR0C3bGgQQL/kdX2UKGgGR7/BQ1rIo3JgaAdLAmgIR0C3bEk0vXbudX2UKGgGR7/CIhyKekHlaAdLAmgIR0C3bGv6KtPpdX2UKGgGR7/K0v4/NZ/1aAdLA2gIR0C3bC3y3CsPdX2UKGgGR7/XeQuEmICVaAdLBGgIR0C3bBBoRIz4dX2UKGgGR7/SDEWIoE0SaAdLBGgIR0C3bFEIToMbdX2UKGgGR7/I+8oQWepXaAdLA2gIR0C3bHIGhVU/dX2UKGgGR7/R5QxesxO+aAdLA2gIR0C3bDP9kz42dX2UKGgGR7+9mZmZmZmaaAdLAmgIR0C3bHhpHqeLdX2UKGgGR7/WOEdvKlpHaAdLBGgIR0C3bBru+h4/dX2UKGgGR7+ng3tKIznBaAdLAWgIR0C3bHqkuYhMdX2UKGgGR7/ZFxXGOuJUaAdLBGgIR0C3bFvVVghKdX2UKGgGR7/S/G2kSElFaAdLA2gIR0C3bDzLB9CvdX2UKGgGR7+38wYcebNKaAdLAmgIR0C3bH8jZ+QVdX2UKGgGR7+3ysjmjj7zaAdLAmgIR0C3bEEyHmA9dX2UKGgGR7/RTz/ZM+NcaAdLBGgIR0C3bCQHNX5ndX2UKGgGR7/TwzLwF1SwaAdLBGgIR0C3bGTs+mm+dX2UKGgGR7+9gWrOqvNeaAdLAmgIR0C3bEXcxj8UdX2UKGgGR7/QwuM+/xlQaAdLA2gIR0C3bIYJqqOtdX2UKGgGR7/HLowEhaC+aAdLA2gIR0C3bCvD+BH1dX2UKGgGR7+/r5ZbILgGaAdLAmgIR0C3bItnbqQjdX2UKGgGR7/Q74BV+7UYaAdLA2gIR0C3bGyLhrFgdX2UKGgGR7/XgTRIBikPaAdLBGgIR0C3bE/CZWq+dX2UKGgGR7/JwS8J2MbWaAdLA2gIR0C3bHMNc4YKdX2UKGgGR7+yCPIXCTEBaAdLAmgIR0C3bFQD7qIKdX2UKGgGR7/eji4rjHXFaAdLBGgIR0C3bDTMvAXVdX2UKGgGR7/hinP3SKFaaAdLBGgIR0C3bJT/6wdKdX2UKGgGR7+zsF+uvECOaAdLAmgIR0C3bFo0dilSdX2UKGgGR7+7iNsFdLQHaAdLAmgIR0C3bDrXcxj8dX2UKGgGR7+272+PBBRiaAdLAmgIR0C3bJqfWcz7dX2UKGgGR7/SDst03fhuaAdLA2gIR0C3bHvXXiBHdX2UKGgGR7+lbu+h4+r3aAdLAWgIR0C3bFzDO1OTdX2UKGgGR7+exKQJXyRTaAdLAWgIR0C3bGAwK0D2dX2UKGgGR7/R7uDzyz5XaAdLA2gIR0C3bIN4u9OAdX2UKGgGR7/XMLF4s3AEaAdLBGgIR0C3bETxoZhsdX2UKGgGR7/ZFuejEehgaAdLBGgIR0C3bKSlJpWWdX2UKGgGR7/IUmD15B1LaAdLA2gIR0C3bGacI7eVdX2UKGgGR7/X9uP3i704aAdLA2gIR0C3bImOyVv/dX2UKGgGR7/X9oN/e+EiaAdLA2gIR0C3bEr+cYqHdX2UKGgGR7/bg4ffXPJJaAdLBGgIR0C3bKylnAZbdX2UKGgGR7/UaS9ugpSaaAdLBGgIR0C3bG6IznA7dX2UKGgGR7/LBLwnYxtYaAdLA2gIR0C3bJDTKDChdX2UKGgGR7/Qmig00m+kaAdLA2gIR0C3bFJKJ2t/dX2UKGgGR7/BL8rI5o4/aAdLAmgIR0C3bJVgMMJAdX2UKGgGR7/U9iMHbAUMaAdLA2gIR0C3bHaFqSHNdX2UKGgGR7+3O2RaHKwIaAdLAmgIR0C3bFdl7MPjdX2UKGgGR7/Yr56+nIhhaAdLBGgIR0C3bLciOeasdX2UKGgGR7/N16E8JUo8aAdLA2gIR0C3bF2hysCDdX2UKGgGR7/Q2U0Nz8xcaAdLA2gIR0C3bL1bA1vVdX2UKGgGR7/WLApKBd2QaAdLBGgIR0C3bJ6O938odX2UKGgGR7/Zpg1FYuCgaAdLBGgIR0C3bH9/4IrwdX2UKGgGR7+gQQL/jsD5aAdLAWgIR0C3bGAVGkN4dX2UKGgGR7/PIPsiSq2jaAdLA2gIR0C3bMVK02LpdX2UKGgGR7/OdQwblzU7aAdLA2gIR0C3bKZ2ZApsdX2UKGgGR7/M6ClJpWWAaAdLA2gIR0C3bGfnW8RMdX2UKGgGR7/Z72tdRiw0aAdLBGgIR0C3bIl2FFlTdX2UKGgGR7/CPCl7+kxiaAdLAmgIR0C3bMm43FUAdX2UKGgGR7/EPXkHUtqYaAdLAmgIR0C3bKra7EpBdX2UKGgGR7/Jz2exwAEMaAdLA2gIR0C3bG4xDb8FdX2UKGgGR7+zRsuWa+ewaAdLAmgIR0C3bK7mp2lmdX2UKGgGR7/KIxgy/KyOaAdLA2gIR0C3bI/oV2zOdX2UKGgGR7+k96kZaV2SaAdLAWgIR0C3bHCJwbVCdX2UKGgGR7/I+6Ae7tiQaAdLA2gIR0C3bNAvlEJCdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 31250,
62
+ "observation_space": {
63
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
64
+ ":serialized:": "gAWVqgMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoGyiWAwAAAAAAAAABAQGUaB9LA4WUaCN0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgbKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoI3SUUpSMBGhpZ2iUaBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgVSwOFlGgjdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFWgYaBsolgMAAAAAAAAAAQEBlGgfSwOFlGgjdJRSlGgmaBsolgMAAAAAAAAAAQEBlGgfSwOFlGgjdJRSlGgrSwOFlGgtaBsolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgVSwOFlGgjdJRSlGgyaBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgVSwOFlGgjdJRSlGg3jAUtMTAuMJRoOYwEMTAuMJRoO051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhoGyiWBgAAAAAAAAABAQEBAQGUaB9LBoWUaCN0lFKUaCZoGyiWBgAAAAAAAAABAQEBAQGUaB9LBoWUaCN0lFKUaCtLBoWUaC1oGyiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCN0lFKUaDJoGyiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCN0lFKUaDeMBS0xMC4wlGg5jAQxMC4wlGg7TnVidWgrTmgQTmg7TnViLg==",
65
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
66
+ "_shape": null,
67
+ "dtype": null,
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVlwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgMAAAAAAAAAAQEBlGgUSwOFlGgYdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoECiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUaBh0lFKUjARoaWdolGgQKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoCksDhZRoGHSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True True True]",
75
+ "bounded_above": "[ True True True]",
76
+ "_shape": [
77
+ 3
78
+ ],
79
+ "low": "[-1. -1. -1.]",
80
+ "high": "[1. 1. 1.]",
81
+ "low_repr": "-1.0",
82
+ "high_repr": "1.0",
83
+ "_np_random": null
84
+ },
85
+ "n_envs": 4,
86
+ "n_steps": 8,
87
+ "gamma": 0.99,
88
+ "gae_lambda": 0.9,
89
+ "ent_coef": 0.0,
90
+ "vf_coef": 0.4,
91
+ "max_grad_norm": 0.5,
92
+ "normalize_advantage": false,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:525b8512fe29664d1561f2b7dc42f35a5aec5c66ba535eeb4b2dc617cbc1389a
3
+ size 45438
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3103ce60741b7129743aa1b50be0a888f3b8cbf94353920c08ab6213a651f17f
3
+ size 46718
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a94e3d668c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a94e3d6ccc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693958397816195545, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfm0Mv/0r3T49t6U+nkxgv+6xrT+ULKy/5Y+0P9hdpT8VPVq/XVFlv067XT/vhay/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVXVyv7ATzj/jCwc/VBYPPvROCz8Os3u/VymZP1TVIT9X75a/AZXBvz16Ej/4GZG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB+bQy//SvdPj23pT44nze/e/3NP98BYD+eTGC/7rGtP5QsrL/N2lG/S8aBP7gqcr/lj7Q/2F2lPxU9Wr+ogrE9GeA+P/3Y0L9dUWW/TrtdP++FrL/T3m+/UJCXvclId7+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.5485457 0.43197623 0.32366362]\n [-0.8761691 1.3569925 -1.3451104 ]\n [ 1.4106413 1.2919264 -0.85249454]\n [-0.89577276 0.8661393 -1.3478373 ]]", "desired_goal": "[[-0.94710284 1.6099758 0.5275251 ]\n [ 0.13973361 0.5441735 -0.9832009 ]\n [ 1.1965741 0.6321614 -1.1791791 ]\n [-1.5123597 0.5721777 -1.133605 ]]", "observation": "[[-0.5485457 0.43197623 0.32366362 -0.71727324 1.6092981 0.87502855]\n [-0.8761691 1.3569925 -1.3451104 -0.8197449 1.0138639 -0.94596434]\n [ 1.4106413 1.2919264 -0.85249454 0.08667499 0.74560696 -1.631622 ]\n [-0.89577276 0.8661393 -1.3478373 -0.9369938 -0.07400572 -0.96595436]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHBX6PDj3ZL3+Y1c92+0FPlhFdD3Vsdk9nS9cvdDrDL70sx89PrELvYY6yr0Vo1U+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03052764 -0.05589983 0.05258559]\n [ 0.13079016 0.05963644 0.10629622]\n [-0.05375635 -0.1376183 0.03898998]\n [-0.03410458 -0.09874444 0.20862992]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9ClSCOFQEaMAWyUSwOMAXSUR0C3bDGuX/o8dX2UKGgGR7/W8g6ltTDPaAdLBGgIR0C3a9XOSntOdX2UKGgGR7/ZZIxxkupTaAdLBGgIR0C3bBZv99+gdX2UKGgGR7/RF7D2rXDnaAdLA2gIR0C3a/dfoicHdX2UKGgGR7/Gakyk9ECvaAdLA2gIR0C3bDd0FKTTdX2UKGgGR7/Bcv/R3NcGaAdLAmgIR0C3bBqIrOJMdX2UKGgGR7/QpUgjhUBGaAdLA2gIR0C3a9wRsdkrdX2UKGgGR7+oEQoTfzjFaAdLAWgIR0C3bBy+xnnMdX2UKGgGR7/UyksSTQmeaAdLA2gIR0C3a/2pZOi4dX2UKGgGR7/XnxJ/XoTxaAdLBGgIR0C3bEDkIX0odX2UKGgGR7/NuuzQeFL4aAdLA2gIR0C3a+NSIgvEdX2UKGgGR7/Odf9gnc+JaAdLA2gIR0C3bCP73wkPdX2UKGgGR7/JWUbDMvAXaAdLA2gIR0C3bATpkf9xdX2UKGgGR7+Y9ovi97F9aAdLAWgIR0C3a+V0YCQtdX2UKGgGR7+4Tj/+85CGaAdLAmgIR0C3bCf7N0NjdX2UKGgGR7+35LytmtheaAdLAmgIR0C3a+lzEJjUdX2UKGgGR7/WR3u/k/8maAdLBGgIR0C3bEkNBnjAdX2UKGgGR7/C3HaN+9amaAdLA2gIR0C3bAr0OEuhdX2UKGgGR7+d43WFvhqCaAdLAWgIR0C3a+uLJjlQdX2UKGgGR7+lqQA+6iCbaAdLAWgIR0C3a+2oegctdX2UKGgGR7/ONQ0oBq9HaAdLA2gIR0C3bC5taY/ndX2UKGgGR7+imj0th/iHaAdLAWgIR0C3a+/ShJyydX2UKGgGR7/Rh8pkPMB7aAdLA2gIR0C3bE+DOC5FdX2UKGgGR7/XwW3z+WGAaAdLBGgIR0C3bBR1PnB+dX2UKGgGR7/GHsTnJT2naAdLA2gIR0C3bFZlOGj9dX2UKGgGR7/U+7Dl5nlGaAdLBGgIR0C3bDeM6zVudX2UKGgGR7/W13dKujh2aAdLBGgIR0C3a/j1bqyGdX2UKGgGR7/LDRc/t6X0aAdLA2gIR0C3bBpeRgZ1dX2UKGgGR7/LjzZpSJj2aAdLA2gIR0C3bFxYvFm4dX2UKGgGR7/MqFRHf/FSaAdLA2gIR0C3bD2F8G9pdX2UKGgGR7/NR5TqB3A3aAdLA2gIR0C3bCBuwX67dX2UKGgGR7/XoM8YAKfGaAdLBGgIR0C3bAD7IkqudX2UKGgGR7+/UCq6vq1PaAdLAmgIR0C3bEGdmQKbdX2UKGgGR7/K9s7+1jRVaAdLA2gIR0C3bGPFFUhndX2UKGgGR7+ZSvTw2ETQaAdLAWgIR0C3bETwH7gsdX2UKGgGR7/Qew9q1w5vaAdLA2gIR0C3bCfGACnxdX2UKGgGR7/LRMN+b3GoaAdLA2gIR0C3bAhltj0+dX2UKGgGR7+0tnPE87p3aAdLAmgIR0C3bGgQQL/kdX2UKGgGR7/BQ1rIo3JgaAdLAmgIR0C3bEk0vXbudX2UKGgGR7/CIhyKekHlaAdLAmgIR0C3bGv6KtPpdX2UKGgGR7/K0v4/NZ/1aAdLA2gIR0C3bC3y3CsPdX2UKGgGR7/XeQuEmICVaAdLBGgIR0C3bBBoRIz4dX2UKGgGR7/SDEWIoE0SaAdLBGgIR0C3bFEIToMbdX2UKGgGR7/I+8oQWepXaAdLA2gIR0C3bHIGhVU/dX2UKGgGR7/R5QxesxO+aAdLA2gIR0C3bDP9kz42dX2UKGgGR7+9mZmZmZmaaAdLAmgIR0C3bHhpHqeLdX2UKGgGR7/WOEdvKlpHaAdLBGgIR0C3bBru+h4/dX2UKGgGR7+ng3tKIznBaAdLAWgIR0C3bHqkuYhMdX2UKGgGR7/ZFxXGOuJUaAdLBGgIR0C3bFvVVghKdX2UKGgGR7/S/G2kSElFaAdLA2gIR0C3bDzLB9CvdX2UKGgGR7+38wYcebNKaAdLAmgIR0C3bH8jZ+QVdX2UKGgGR7+3ysjmjj7zaAdLAmgIR0C3bEEyHmA9dX2UKGgGR7/RTz/ZM+NcaAdLBGgIR0C3bCQHNX5ndX2UKGgGR7/TwzLwF1SwaAdLBGgIR0C3bGTs+mm+dX2UKGgGR7+9gWrOqvNeaAdLAmgIR0C3bEXcxj8UdX2UKGgGR7/QwuM+/xlQaAdLA2gIR0C3bIYJqqOtdX2UKGgGR7/HLowEhaC+aAdLA2gIR0C3bCvD+BH1dX2UKGgGR7+/r5ZbILgGaAdLAmgIR0C3bItnbqQjdX2UKGgGR7/Q74BV+7UYaAdLA2gIR0C3bGyLhrFgdX2UKGgGR7/XgTRIBikPaAdLBGgIR0C3bE/CZWq+dX2UKGgGR7/JwS8J2MbWaAdLA2gIR0C3bHMNc4YKdX2UKGgGR7+yCPIXCTEBaAdLAmgIR0C3bFQD7qIKdX2UKGgGR7/eji4rjHXFaAdLBGgIR0C3bDTMvAXVdX2UKGgGR7/hinP3SKFaaAdLBGgIR0C3bJT/6wdKdX2UKGgGR7+zsF+uvECOaAdLAmgIR0C3bFo0dilSdX2UKGgGR7+7iNsFdLQHaAdLAmgIR0C3bDrXcxj8dX2UKGgGR7+272+PBBRiaAdLAmgIR0C3bJqfWcz7dX2UKGgGR7/SDst03fhuaAdLA2gIR0C3bHvXXiBHdX2UKGgGR7+lbu+h4+r3aAdLAWgIR0C3bFzDO1OTdX2UKGgGR7+exKQJXyRTaAdLAWgIR0C3bGAwK0D2dX2UKGgGR7/R7uDzyz5XaAdLA2gIR0C3bIN4u9OAdX2UKGgGR7/XMLF4s3AEaAdLBGgIR0C3bETxoZhsdX2UKGgGR7/ZFuejEehgaAdLBGgIR0C3bKSlJpWWdX2UKGgGR7/IUmD15B1LaAdLA2gIR0C3bGacI7eVdX2UKGgGR7/X9uP3i704aAdLA2gIR0C3bImOyVv/dX2UKGgGR7/X9oN/e+EiaAdLA2gIR0C3bEr+cYqHdX2UKGgGR7/bg4ffXPJJaAdLBGgIR0C3bKylnAZbdX2UKGgGR7/UaS9ugpSaaAdLBGgIR0C3bG6IznA7dX2UKGgGR7/LBLwnYxtYaAdLA2gIR0C3bJDTKDChdX2UKGgGR7/Qmig00m+kaAdLA2gIR0C3bFJKJ2t/dX2UKGgGR7/BL8rI5o4/aAdLAmgIR0C3bJVgMMJAdX2UKGgGR7/U9iMHbAUMaAdLA2gIR0C3bHaFqSHNdX2UKGgGR7+3O2RaHKwIaAdLAmgIR0C3bFdl7MPjdX2UKGgGR7/Yr56+nIhhaAdLBGgIR0C3bLciOeasdX2UKGgGR7/N16E8JUo8aAdLA2gIR0C3bF2hysCDdX2UKGgGR7/Q2U0Nz8xcaAdLA2gIR0C3bL1bA1vVdX2UKGgGR7/WLApKBd2QaAdLBGgIR0C3bJ6O938odX2UKGgGR7/Zpg1FYuCgaAdLBGgIR0C3bH9/4IrwdX2UKGgGR7+gQQL/jsD5aAdLAWgIR0C3bGAVGkN4dX2UKGgGR7/PIPsiSq2jaAdLA2gIR0C3bMVK02LpdX2UKGgGR7/OdQwblzU7aAdLA2gIR0C3bKZ2ZApsdX2UKGgGR7/M6ClJpWWAaAdLA2gIR0C3bGfnW8RMdX2UKGgGR7/Z72tdRiw0aAdLBGgIR0C3bIl2FFlTdX2UKGgGR7/CPCl7+kxiaAdLAmgIR0C3bMm43FUAdX2UKGgGR7/EPXkHUtqYaAdLAmgIR0C3bKra7EpBdX2UKGgGR7/Jz2exwAEMaAdLA2gIR0C3bG4xDb8FdX2UKGgGR7+zRsuWa+ewaAdLAmgIR0C3bK7mp2lmdX2UKGgGR7/KIxgy/KyOaAdLA2gIR0C3bI/oV2zOdX2UKGgGR7+k96kZaV2SaAdLAWgIR0C3bHCJwbVCdX2UKGgGR7/I+6Ae7tiQaAdLA2gIR0C3bNAvlEJCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVqgMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoGyiWAwAAAAAAAAABAQGUaB9LA4WUaCN0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgbKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoI3SUUpSMBGhpZ2iUaBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgVSwOFlGgjdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFWgYaBsolgMAAAAAAAAAAQEBlGgfSwOFlGgjdJRSlGgmaBsolgMAAAAAAAAAAQEBlGgfSwOFlGgjdJRSlGgrSwOFlGgtaBsolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgVSwOFlGgjdJRSlGgyaBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgVSwOFlGgjdJRSlGg3jAUtMTAuMJRoOYwEMTAuMJRoO051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhoGyiWBgAAAAAAAAABAQEBAQGUaB9LBoWUaCN0lFKUaCZoGyiWBgAAAAAAAAABAQEBAQGUaB9LBoWUaCN0lFKUaCtLBoWUaC1oGyiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCN0lFKUaDJoGyiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCN0lFKUaDeMBS0xMC4wlGg5jAQxMC4wlGg7TnVidWgrTmgQTmg7TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgMAAAAAAAAAAQEBlGgUSwOFlGgYdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoECiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUaBh0lFKUjARoaWdolGgQKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoCksDhZRoGHSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (683 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.2559263398870826, "std_reward": 0.14062987659569862, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-06T00:44:52.044874"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd5c572a7eec09a7baa32a19679b4e0551b0092f99cd9f2917bacecec9d091ba
3
+ size 2623