File size: 3,880 Bytes
d8e98ab
 
 
 
 
 
 
8fe548d
 
 
 
 
 
 
 
650af63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bccc85c
650af63
 
 
 
 
 
 
 
 
 
 
 
 
 
d8e98ab
 
 
 
 
b3dd029
d8e98ab
8fe548d
d8e98ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fe548d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
datasets:
- thennal/IMaSC
- vrclc/festvox-iiith-ml
- vrclc/openslr63
language:
- ml
library_name: transformers
pipeline_tag: text-generation
model-index:
- name: w2v2bert-Malayalam
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: OpenSLR Malayalam -Test
      type: vrclc/openslr63
      config: ml
      split: test
      args: ml
    metrics:
    - type: wer
      value: 8.82
      name: WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Goole Fleurs
      type: google/fleurs
      config: ml
      split: test
      args: ml
    metrics:
    - type: wer
      value: 32.01
      name: WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset: 
      name: Common Voice 16 Malayalam
      type: mozilla-foundation/common_voice_16_1
      config: ml
      split: test
      args: ml
    metrics:
    - type: wer
      value: 52.72
      name: WER
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# W2V2-BERT-withLM-Studio-Malayalam

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on [IMASC](https://huggingface.co/datasets/thennal/IMaSC), [OpenSLR Malayalam Train split](https://huggingface.co/datasets/vrclc/openslr63), [Festvox Malayalam](https://huggingface.co/datasets/vrclc/festvox-iiith-ml)dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1587
- Wer: 0.1157

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Wer    |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 1.0335        | 0.4932 | 600   | 0.3654          | 0.4387 |
| 0.1531        | 0.9864 | 1200  | 0.2373          | 0.3332 |
| 0.1074        | 1.4797 | 1800  | 0.2069          | 0.2953 |
| 0.0928        | 1.9729 | 2400  | 0.2146          | 0.2814 |
| 0.0734        | 2.4661 | 3000  | 0.1947          | 0.2433 |
| 0.0678        | 2.9593 | 3600  | 0.1938          | 0.2406 |
| 0.0522        | 3.4525 | 4200  | 0.1566          | 0.2053 |
| 0.0493        | 3.9457 | 4800  | 0.1649          | 0.1988 |
| 0.0366        | 4.4390 | 5400  | 0.1417          | 0.1834 |
| 0.0372        | 4.9322 | 6000  | 0.1542          | 0.1749 |
| 0.028         | 5.4254 | 6600  | 0.1476          | 0.1620 |
| 0.0263        | 5.9186 | 7200  | 0.1388          | 0.1622 |
| 0.0195        | 6.4118 | 7800  | 0.1384          | 0.1495 |
| 0.0185        | 6.9051 | 8400  | 0.1351          | 0.1383 |
| 0.0136        | 7.3983 | 9000  | 0.1404          | 0.1344 |
| 0.0119        | 7.8915 | 9600  | 0.1253          | 0.1276 |
| 0.0087        | 8.3847 | 10200 | 0.1443          | 0.1284 |
| 0.0066        | 8.8779 | 10800 | 0.1475          | 0.1252 |
| 0.0049        | 9.3711 | 11400 | 0.1577          | 0.1227 |
| 0.0038        | 9.8644 | 12000 | 0.1587          | 0.1157 |


### Framework versions

- Transformers 4.42.2
- Pytorch 2.1.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1