--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-studio results: [] datasets: - thennal/IMaSC - vrclc/festvox-iiith-ml - vrclc/openslr63 language: - ml library_name: transformers pipeline_tag: text-generation --- # W2V2-BERT-withLM-Studio-Malayalam This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on [IMASC](https://huggingface.co/datasets/thennal/IMaSC), [OpenSLR Malayalam Train split](https://huggingface.co/datasets/vrclc/openslr63), [Festvox Malayalam](https://huggingface.co/datasets/vrclc/festvox-iiith-ml)dataset. It achieves the following results on the evaluation set: - Loss: 0.1587 - Wer: 0.1157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 1.0335 | 0.4932 | 600 | 0.3654 | 0.4387 | | 0.1531 | 0.9864 | 1200 | 0.2373 | 0.3332 | | 0.1074 | 1.4797 | 1800 | 0.2069 | 0.2953 | | 0.0928 | 1.9729 | 2400 | 0.2146 | 0.2814 | | 0.0734 | 2.4661 | 3000 | 0.1947 | 0.2433 | | 0.0678 | 2.9593 | 3600 | 0.1938 | 0.2406 | | 0.0522 | 3.4525 | 4200 | 0.1566 | 0.2053 | | 0.0493 | 3.9457 | 4800 | 0.1649 | 0.1988 | | 0.0366 | 4.4390 | 5400 | 0.1417 | 0.1834 | | 0.0372 | 4.9322 | 6000 | 0.1542 | 0.1749 | | 0.028 | 5.4254 | 6600 | 0.1476 | 0.1620 | | 0.0263 | 5.9186 | 7200 | 0.1388 | 0.1622 | | 0.0195 | 6.4118 | 7800 | 0.1384 | 0.1495 | | 0.0185 | 6.9051 | 8400 | 0.1351 | 0.1383 | | 0.0136 | 7.3983 | 9000 | 0.1404 | 0.1344 | | 0.0119 | 7.8915 | 9600 | 0.1253 | 0.1276 | | 0.0087 | 8.3847 | 10200 | 0.1443 | 0.1284 | | 0.0066 | 8.8779 | 10800 | 0.1475 | 0.1252 | | 0.0049 | 9.3711 | 11400 | 0.1577 | 0.1227 | | 0.0038 | 9.8644 | 12000 | 0.1587 | 0.1157 | ### Framework versions - Transformers 4.42.2 - Pytorch 2.1.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1