--- base_model: Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct datasets: - LDJnr/Capybara - jondurbin/airoboros-3.2 - unalignment/toxic-dpo-v0.1 - LDJnr/Verified-Camel - HuggingFaceH4/no_robots - Doctor-Shotgun/no-robots-sharegpt - Doctor-Shotgun/capybara-sharegpt language: - en library_name: transformers pipeline_tag: text-generation tags: - llama - mlx inference: false --- # vrglx33/TinyLlama-1.1B-32k-Instruct-mlx The Model [vrglx33/TinyLlama-1.1B-32k-Instruct-mlx](https://huggingface.co/vrglx33/TinyLlama-1.1B-32k-Instruct-mlx) was converted to MLX format from [Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct](https://huggingface.co/Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct) using mlx-lm version **0.19.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("vrglx33/TinyLlama-1.1B-32k-Instruct-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```