Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1641.04 +/- 62.56
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ee9ca08acb69a5b31e5f3346e7be5e04df7cc3f8afe3380c1af09b70ee1dee0
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f49e396b8b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f49e396b940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f49e396b9d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f49e396ba60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f49e396baf0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f49e396bb80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f49e396bc10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f49e396bca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f49e396bd30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f49e396bdc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f49e396be50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f49e396bee0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f49e3963d20>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674147738255601879,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKDlPT9MMAO/Z6dOP8JAvz4/jYI/o8GGP7vKYT90LZm/p4XLP50boTkf4hk/hIMovytngT9a13o/IEXSPrfPGz8MaAFAuFvTP9GJDD+v5+w8eHH/vkiuEb8rz1o/MC9Bv9fpSr+ixjA/cUiZPlfHJj+aqH0+OY7APmgbSD78W3O8qiZZPVHRJsAfzCY9cg7xPquXU76E7zK+91uCvmuQdj5dBpC+udQSwK69Fr/zGDm7LOeYPiRguL5U2dG+wxzEv7cf0b58+bY/VoExv8QErD7X6Uq/V125v3FImT7YecS/cxTavZiLTz+3i9G+5hP5Pi6s9D6ztFE/7PdAvTog6r6rqcs/jJwcvCDHIz8Exkk/xakPv4QK4T5DJFI7wOx/vu4fhD5YINY9m9gMP20n6zySj7I/u+hevx86hz87INc+1+lKv6LGMD9xSJk+V8cmP7JU3D4D51s/oKgAv/84ez5KJm0/rjdwP/9PAT9M892+E9eLP2uQpL9Axog/72BsPAdavz64OYI+W96vvsfqB72JUac+4Z5YvySsDD81hdI8wSMMP2f3p7+3J1g/rWwYvtfpSr+ixjA/cUiZPlfHJj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABBKZ42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAz6nKvAAAAAC4V+2/AAAAAP6i7D0AAAAATm/3PwAAAAAxlVO9AAAAAMOz2j8AAAAAdsLwvQAAAADXuv2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAENyStgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBBYED4AAAAAWYb/vwAAAADNK+u7AAAAAAmQAEAAAAAA+DHUvQAAAADA6vc/AAAAAMF6cr0AAAAARhH6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIOizYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDC5si9AAAAANrF7r8AAAAAckOhPQAAAABJaOE/AAAAADlsA74AAAAAeHUAQAAAAABevwy+AAAAAHK37L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVSvMzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaBL8vQAAAACPMuG/AAAAAOlzCL4AAAAAyBQAQAAAAACKAK09AAAAAF227j8AAAAALhqhPQAAAAD0kO+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ81Zi7TUiKMAWyUTegDjAF0lEdApxK3Rw6ySnV9lChoBkdAnoMxmseXA2gHTegDaAhHQKcTJVwPy091fZQoaAZHQJ8/ZISUTtdoB03oA2gIR0CnGWi/47A+dX2UKGgGR0Cgq5D1GsmwaAdN6ANoCEdApxvxSrHU+nV9lChoBkdAnARy2lVLjGgHTegDaAhHQKcezb4agmJ1fZQoaAZHQKCCaRbr1NBoB03oA2gIR0CnHz3e3x4IdX2UKGgGR0CgBorKmsNlaAdN6ANoCEdApyWAYxcmjXV9lChoBkdAnw4moR7JGWgHTegDaAhHQKcoDcNYr8R1fZQoaAZHQJ8MhoexOcloB03oA2gIR0CnKvfUWl/IdX2UKGgGR0B/jDTTfBN3aAdN6ANoCEdApytnwI+nqHV9lChoBkdAnTIjLKV6eGgHTegDaAhHQKcx1aRISUV1fZQoaAZHQJ6Zk6jnFHdoB03oA2gIR0CnNFfxMFlkdX2UKGgGR0CdVItNzr/saAdN6ANoCEdApzeLB42S+3V9lChoBkdAno161PWQOmgHTegDaAhHQKc4KoKlYU51fZQoaAZHQJ4tuKBNEgJoB03oA2gIR0CnQUpgLJCCdX2UKGgGR0CZLGqkdmxuaAdN6ANoCEdAp0PHdsSCe3V9lChoBkdAmvh9OqNp/WgHTegDaAhHQKdGtub7TDx1fZQoaAZHQJlClgmZ3LVoB03oA2gIR0CnRzTqjaf0dX2UKGgGR0CbhO1uzhP1aAdN6ANoCEdAp02D4DcM3XV9lChoBkdAnNj4nSfDk2gHTegDaAhHQKdP/fJFLFp1fZQoaAZHQJohYVh1DBxoB03oA2gIR0CnUt4oZydXdX2UKGgGR0CajkP+XJHRaAdN6ANoCEdAp1NMhLXcxnV9lChoBkdAnLhQ+QlrumgHTegDaAhHQKdZjWT5ftx1fZQoaAZHQJmrDZ7HAARoB03oA2gIR0CnXB9Jz1brdX2UKGgGR0CSBbr+YMOPaAdN6ANoCEdAp18XFR51NnV9lChoBkdAlwY8ZLqUvGgHTegDaAhHQKdfhqxC6Yp1fZQoaAZHQJyMEp2ECeVoB03oA2gIR0CnZe0yxiXqdX2UKGgGR0Cc8gVNpM6BaAdN6ANoCEdAp2iB1A7gbnV9lChoBkdAmjfH1J17pmgHTegDaAhHQKdrX7cfvF51fZQoaAZHQJwtxW3jMmpoB03oA2gIR0Cna88ABDG+dX2UKGgGR0CUPpRJVbRnaAdN6ANoCEdAp3I6aXrt3XV9lChoBkdAmpPAPqcEvGgHTegDaAhHQKd0xpA2Q4l1fZQoaAZHQJkmqbz9S/FoB03oA2gIR0Cnd6ZavA45dX2UKGgGR0CWf9Q+EAYIaAdN6ANoCEdAp3gepKjBVXV9lChoBkdAnDizlT3qRmgHTegDaAhHQKd+aD6nBLx1fZQoaAZHQJSJRkwvg3toB03oA2gIR0CngPw0XP7fdX2UKGgGR0CBmlROUMXraAdN6ANoCEdAp4PxUzbeuXV9lChoBkdAnoCZgTh5xGgHTegDaAhHQKeEZhKlHjJ1fZQoaAZHQJmlyxTsIE9oB03oA2gIR0CnitQiqyWzdX2UKGgGR0CdOfQQtjCpaAdN6ANoCEdAp455tWMjvHV9lChoBkdAm4VH0PH1e2gHTegDaAhHQKeS1G3nZCh1fZQoaAZHQJozimwaBI5oB03oA2gIR0Cnk3xaxHG0dX2UKGgGR0CdpdlSjxkNaAdN6ANoCEdAp5nn6oESunV9lChoBkdAnRVihakhzWgHTegDaAhHQKecbUsnRb91fZQoaAZHQJoM+wD/2kBoB03oA2gIR0Cnn0prcj7idX2UKGgGR0Cd1BiF0xM4aAdN6ANoCEdAp5+1LHuJDXV9lChoBkdAmqFbL+xW1mgHTegDaAhHQKel24p+c6N1fZQoaAZHQJsO3uw5eZ5oB03oA2gIR0CnqG/giu+zdX2UKGgGR0CcPwsXSBsiaAdN6ANoCEdAp6tPPmganHV9lChoBkdAlAxjOoo/imgHTegDaAhHQKeru/KQq7R1fZQoaAZHQJf3pFjNILBoB03oA2gIR0CnsfWv0RODdX2UKGgGR0CXuEDxLCemaAdN6ANoCEdAp7R49gWrO3V9lChoBkdAmlIs4ku6E2gHTegDaAhHQKe3Z4D9wWF1fZQoaAZHQJZWuloDgZVoB03oA2gIR0Cnt9pjlPrOdX2UKGgGR0CcnlGEf1YhaAdN6ANoCEdAp74biZOSGXV9lChoBkdAkQDEiD/VAmgHTegDaAhHQKfAu9ugpSd1fZQoaAZHQJrR2BjFyaNoB03oA2gIR0Cnw5nLq2SddX2UKGgGR0Cbwd1Vo6CEaAdN6ANoCEdAp8QKasp5NXV9lChoBkdAnWTQmVqveWgHTegDaAhHQKfKa4oZydZ1fZQoaAZHQKCHUo/iYLNoB03oA2gIR0CnzPaRyOrAdX2UKGgGR0CeJCRYRujzaAdN6ANoCEdAp8/VNSIgvHV9lChoBkdAn9JZGz8gp2gHTegDaAhHQKfQTBpHqeN1fZQoaAZHQKAqSSAYpDxoB03oA2gIR0Cn1tOanaWYdX2UKGgGR0CgVDgW8AaOaAdN6ANoCEdAp9lbJIUah3V9lChoBkdAnVkxkmQbM2gHTegDaAhHQKfcPr9l2/11fZQoaAZHQKDqX8Q7LdNoB03oA2gIR0Cn3K6ScLBsdX2UKGgGR0CcpbVPepGXaAdN6ANoCEdAp+MAKv3ajHV9lChoBkdAoAAqWVu76GgHTegDaAhHQKfljkBCD291fZQoaAZHQJu+HKA8SwpoB03oA2gIR0Cn6H+l0o0AdX2UKGgGR0CeQk7IkqtpaAdN6ANoCEdAp+jscABDHHV9lChoBkdAnkztoFmnO2gHTegDaAhHQKfvSkFfReF1fZQoaAZHQJw1fgAIY3xoB03oA2gIR0Cn8dQCCBf8dX2UKGgGR0CZoONKAavSaAdN6ANoCEdAp/Suc8TzunV9lChoBkdAnORzx5LRKGgHTegDaAhHQKf1HJZntfJ1fZQoaAZHQJi4q51/2CdoB03oA2gIR0Cn+2H3Dej3dX2UKGgGR0CdeRGGEf1ZaAdN6ANoCEdAp/4KFZgXuXV9lChoBkdAngMvozN2T2gHTegDaAhHQKgA9VfeDWd1fZQoaAZHQJxtRRWLgoBoB03oA2gIR0CoAWODrZ8KdX2UKGgGR0Cdkp32VVxTaAdN6ANoCEdAqAfD9l2/z3V9lChoBkdAmpfA3cYZVGgHTegDaAhHQKgKRJz1bq11fZQoaAZHQJbffsqril1oB03oA2gIR0CoDSmpda+wdX2UKGgGR0CYpRI2OyVwaAdN6ANoCEdAqA2YLRa5gHV9lChoBkdAmCCmjwhGIGgHTegDaAhHQKgT/G6PKdR1fZQoaAZHQJnfFqpLmIVoB03oA2gIR0CoFoz7/GVBdX2UKGgGR0CX7wyo4uK5aAdN6ANoCEdAqBlx8fFJhHV9lChoBkdAmLlpW7voeWgHTegDaAhHQKgZ3z1bqyJ1fZQoaAZHQJ0i0RVZLZloB03oA2gIR0CoIBywwCbMdX2UKGgGR0CXTo7fpD/maAdN6ANoCEdAqCKdeY2KmHV9lChoBkdAluH2vB7/oGgHTegDaAhHQKgld3PAwf11fZQoaAZHQJrhwMYuTRpoB03oA2gIR0CoJfSEcsDodX2UKGgGR0CX6nWHDaXbaAdN6ANoCEdAqCxMKmbb13V9lChoBkdAl8Q4jfNzKmgHTegDaAhHQKgu6lTFVDN1fZQoaAZHQJjquRmseXBoB03oA2gIR0CoMdLwWnCPdX2UKGgGR0CZqq4tHxz8aAdN6ANoCEdAqDI/rKNhmXV9lChoBkdAmc6KUA1ejWgHTegDaAhHQKg4ktT1kDp1fZQoaAZHQJXI4MrmQsBoB03oA2gIR0CoOzveYUnHdX2UKGgGR0CYCRRF7UobaAdN6ANoCEdAqD4uI2wV03V9lChoBkdAloA9t2s7uGgHTegDaAhHQKg+nGkvboN1fZQoaAZHQJfDt3Qla8poB03oA2gIR0CoRQ3XiBGydX2UKGgGR0CWQXvl2eQNaAdN6ANoCEdAqEeakXUH6nVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f158ed3838b4006fb4e16f5a74e577fae257e1d76627b4502cc92c44b02e26d
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92f090965168a43753493221c1fa4af9ab163eb5a81abb2e8f4209ca077d7337
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f49e396b8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f49e396b940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f49e396b9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f49e396ba60>", "_build": "<function ActorCriticPolicy._build at 0x7f49e396baf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f49e396bb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f49e396bc10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f49e396bca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f49e396bd30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f49e396bdc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f49e396be50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f49e396bee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f49e3963d20>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674147738255601879, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKDlPT9MMAO/Z6dOP8JAvz4/jYI/o8GGP7vKYT90LZm/p4XLP50boTkf4hk/hIMovytngT9a13o/IEXSPrfPGz8MaAFAuFvTP9GJDD+v5+w8eHH/vkiuEb8rz1o/MC9Bv9fpSr+ixjA/cUiZPlfHJj+aqH0+OY7APmgbSD78W3O8qiZZPVHRJsAfzCY9cg7xPquXU76E7zK+91uCvmuQdj5dBpC+udQSwK69Fr/zGDm7LOeYPiRguL5U2dG+wxzEv7cf0b58+bY/VoExv8QErD7X6Uq/V125v3FImT7YecS/cxTavZiLTz+3i9G+5hP5Pi6s9D6ztFE/7PdAvTog6r6rqcs/jJwcvCDHIz8Exkk/xakPv4QK4T5DJFI7wOx/vu4fhD5YINY9m9gMP20n6zySj7I/u+hevx86hz87INc+1+lKv6LGMD9xSJk+V8cmP7JU3D4D51s/oKgAv/84ez5KJm0/rjdwP/9PAT9M892+E9eLP2uQpL9Axog/72BsPAdavz64OYI+W96vvsfqB72JUac+4Z5YvySsDD81hdI8wSMMP2f3p7+3J1g/rWwYvtfpSr+ixjA/cUiZPlfHJj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABBKZ42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAz6nKvAAAAAC4V+2/AAAAAP6i7D0AAAAATm/3PwAAAAAxlVO9AAAAAMOz2j8AAAAAdsLwvQAAAADXuv2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAENyStgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBBYED4AAAAAWYb/vwAAAADNK+u7AAAAAAmQAEAAAAAA+DHUvQAAAADA6vc/AAAAAMF6cr0AAAAARhH6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIOizYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDC5si9AAAAANrF7r8AAAAAckOhPQAAAABJaOE/AAAAADlsA74AAAAAeHUAQAAAAABevwy+AAAAAHK37L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVSvMzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaBL8vQAAAACPMuG/AAAAAOlzCL4AAAAAyBQAQAAAAACKAK09AAAAAF227j8AAAAALhqhPQAAAAD0kO+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ81Zi7TUiKMAWyUTegDjAF0lEdApxK3Rw6ySnV9lChoBkdAnoMxmseXA2gHTegDaAhHQKcTJVwPy091fZQoaAZHQJ8/ZISUTtdoB03oA2gIR0CnGWi/47A+dX2UKGgGR0Cgq5D1GsmwaAdN6ANoCEdApxvxSrHU+nV9lChoBkdAnARy2lVLjGgHTegDaAhHQKcezb4agmJ1fZQoaAZHQKCCaRbr1NBoB03oA2gIR0CnHz3e3x4IdX2UKGgGR0CgBorKmsNlaAdN6ANoCEdApyWAYxcmjXV9lChoBkdAnw4moR7JGWgHTegDaAhHQKcoDcNYr8R1fZQoaAZHQJ8MhoexOcloB03oA2gIR0CnKvfUWl/IdX2UKGgGR0B/jDTTfBN3aAdN6ANoCEdApytnwI+nqHV9lChoBkdAnTIjLKV6eGgHTegDaAhHQKcx1aRISUV1fZQoaAZHQJ6Zk6jnFHdoB03oA2gIR0CnNFfxMFlkdX2UKGgGR0CdVItNzr/saAdN6ANoCEdApzeLB42S+3V9lChoBkdAno161PWQOmgHTegDaAhHQKc4KoKlYU51fZQoaAZHQJ4tuKBNEgJoB03oA2gIR0CnQUpgLJCCdX2UKGgGR0CZLGqkdmxuaAdN6ANoCEdAp0PHdsSCe3V9lChoBkdAmvh9OqNp/WgHTegDaAhHQKdGtub7TDx1fZQoaAZHQJlClgmZ3LVoB03oA2gIR0CnRzTqjaf0dX2UKGgGR0CbhO1uzhP1aAdN6ANoCEdAp02D4DcM3XV9lChoBkdAnNj4nSfDk2gHTegDaAhHQKdP/fJFLFp1fZQoaAZHQJohYVh1DBxoB03oA2gIR0CnUt4oZydXdX2UKGgGR0CajkP+XJHRaAdN6ANoCEdAp1NMhLXcxnV9lChoBkdAnLhQ+QlrumgHTegDaAhHQKdZjWT5ftx1fZQoaAZHQJmrDZ7HAARoB03oA2gIR0CnXB9Jz1brdX2UKGgGR0CSBbr+YMOPaAdN6ANoCEdAp18XFR51NnV9lChoBkdAlwY8ZLqUvGgHTegDaAhHQKdfhqxC6Yp1fZQoaAZHQJyMEp2ECeVoB03oA2gIR0CnZe0yxiXqdX2UKGgGR0Cc8gVNpM6BaAdN6ANoCEdAp2iB1A7gbnV9lChoBkdAmjfH1J17pmgHTegDaAhHQKdrX7cfvF51fZQoaAZHQJwtxW3jMmpoB03oA2gIR0Cna88ABDG+dX2UKGgGR0CUPpRJVbRnaAdN6ANoCEdAp3I6aXrt3XV9lChoBkdAmpPAPqcEvGgHTegDaAhHQKd0xpA2Q4l1fZQoaAZHQJkmqbz9S/FoB03oA2gIR0Cnd6ZavA45dX2UKGgGR0CWf9Q+EAYIaAdN6ANoCEdAp3gepKjBVXV9lChoBkdAnDizlT3qRmgHTegDaAhHQKd+aD6nBLx1fZQoaAZHQJSJRkwvg3toB03oA2gIR0CngPw0XP7fdX2UKGgGR0CBmlROUMXraAdN6ANoCEdAp4PxUzbeuXV9lChoBkdAnoCZgTh5xGgHTegDaAhHQKeEZhKlHjJ1fZQoaAZHQJmlyxTsIE9oB03oA2gIR0CnitQiqyWzdX2UKGgGR0CdOfQQtjCpaAdN6ANoCEdAp455tWMjvHV9lChoBkdAm4VH0PH1e2gHTegDaAhHQKeS1G3nZCh1fZQoaAZHQJozimwaBI5oB03oA2gIR0Cnk3xaxHG0dX2UKGgGR0CdpdlSjxkNaAdN6ANoCEdAp5nn6oESunV9lChoBkdAnRVihakhzWgHTegDaAhHQKecbUsnRb91fZQoaAZHQJoM+wD/2kBoB03oA2gIR0Cnn0prcj7idX2UKGgGR0Cd1BiF0xM4aAdN6ANoCEdAp5+1LHuJDXV9lChoBkdAmqFbL+xW1mgHTegDaAhHQKel24p+c6N1fZQoaAZHQJsO3uw5eZ5oB03oA2gIR0CnqG/giu+zdX2UKGgGR0CcPwsXSBsiaAdN6ANoCEdAp6tPPmganHV9lChoBkdAlAxjOoo/imgHTegDaAhHQKeru/KQq7R1fZQoaAZHQJf3pFjNILBoB03oA2gIR0CnsfWv0RODdX2UKGgGR0CXuEDxLCemaAdN6ANoCEdAp7R49gWrO3V9lChoBkdAmlIs4ku6E2gHTegDaAhHQKe3Z4D9wWF1fZQoaAZHQJZWuloDgZVoB03oA2gIR0Cnt9pjlPrOdX2UKGgGR0CcnlGEf1YhaAdN6ANoCEdAp74biZOSGXV9lChoBkdAkQDEiD/VAmgHTegDaAhHQKfAu9ugpSd1fZQoaAZHQJrR2BjFyaNoB03oA2gIR0Cnw5nLq2SddX2UKGgGR0Cbwd1Vo6CEaAdN6ANoCEdAp8QKasp5NXV9lChoBkdAnWTQmVqveWgHTegDaAhHQKfKa4oZydZ1fZQoaAZHQKCHUo/iYLNoB03oA2gIR0CnzPaRyOrAdX2UKGgGR0CeJCRYRujzaAdN6ANoCEdAp8/VNSIgvHV9lChoBkdAn9JZGz8gp2gHTegDaAhHQKfQTBpHqeN1fZQoaAZHQKAqSSAYpDxoB03oA2gIR0Cn1tOanaWYdX2UKGgGR0CgVDgW8AaOaAdN6ANoCEdAp9lbJIUah3V9lChoBkdAnVkxkmQbM2gHTegDaAhHQKfcPr9l2/11fZQoaAZHQKDqX8Q7LdNoB03oA2gIR0Cn3K6ScLBsdX2UKGgGR0CcpbVPepGXaAdN6ANoCEdAp+MAKv3ajHV9lChoBkdAoAAqWVu76GgHTegDaAhHQKfljkBCD291fZQoaAZHQJu+HKA8SwpoB03oA2gIR0Cn6H+l0o0AdX2UKGgGR0CeQk7IkqtpaAdN6ANoCEdAp+jscABDHHV9lChoBkdAnkztoFmnO2gHTegDaAhHQKfvSkFfReF1fZQoaAZHQJw1fgAIY3xoB03oA2gIR0Cn8dQCCBf8dX2UKGgGR0CZoONKAavSaAdN6ANoCEdAp/Suc8TzunV9lChoBkdAnORzx5LRKGgHTegDaAhHQKf1HJZntfJ1fZQoaAZHQJi4q51/2CdoB03oA2gIR0Cn+2H3Dej3dX2UKGgGR0CdeRGGEf1ZaAdN6ANoCEdAp/4KFZgXuXV9lChoBkdAngMvozN2T2gHTegDaAhHQKgA9VfeDWd1fZQoaAZHQJxtRRWLgoBoB03oA2gIR0CoAWODrZ8KdX2UKGgGR0Cdkp32VVxTaAdN6ANoCEdAqAfD9l2/z3V9lChoBkdAmpfA3cYZVGgHTegDaAhHQKgKRJz1bq11fZQoaAZHQJbffsqril1oB03oA2gIR0CoDSmpda+wdX2UKGgGR0CYpRI2OyVwaAdN6ANoCEdAqA2YLRa5gHV9lChoBkdAmCCmjwhGIGgHTegDaAhHQKgT/G6PKdR1fZQoaAZHQJnfFqpLmIVoB03oA2gIR0CoFoz7/GVBdX2UKGgGR0CX7wyo4uK5aAdN6ANoCEdAqBlx8fFJhHV9lChoBkdAmLlpW7voeWgHTegDaAhHQKgZ3z1bqyJ1fZQoaAZHQJ0i0RVZLZloB03oA2gIR0CoIBywwCbMdX2UKGgGR0CXTo7fpD/maAdN6ANoCEdAqCKdeY2KmHV9lChoBkdAluH2vB7/oGgHTegDaAhHQKgld3PAwf11fZQoaAZHQJrhwMYuTRpoB03oA2gIR0CoJfSEcsDodX2UKGgGR0CX6nWHDaXbaAdN6ANoCEdAqCxMKmbb13V9lChoBkdAl8Q4jfNzKmgHTegDaAhHQKgu6lTFVDN1fZQoaAZHQJjquRmseXBoB03oA2gIR0CoMdLwWnCPdX2UKGgGR0CZqq4tHxz8aAdN6ANoCEdAqDI/rKNhmXV9lChoBkdAmc6KUA1ejWgHTegDaAhHQKg4ktT1kDp1fZQoaAZHQJXI4MrmQsBoB03oA2gIR0CoOzveYUnHdX2UKGgGR0CYCRRF7UobaAdN6ANoCEdAqD4uI2wV03V9lChoBkdAloA9t2s7uGgHTegDaAhHQKg+nGkvboN1fZQoaAZHQJfDt3Qla8poB03oA2gIR0CoRQ3XiBGydX2UKGgGR0CWQXvl2eQNaAdN6ANoCEdAqEeakXUH6nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79868cbd15f10e9d3b13f704a2f6f5a98107b38bad27c0d9921f2c4869ad9efd
|
3 |
+
size 1131903
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1641.0384354432579, "std_reward": 62.56300510395705, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T17:55:02.110701"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cb6860ca26e03fe7f4146040f465ef0761ef8b2dabf4641743470a084cc23be
|
3 |
+
size 2521
|