vtiyyal1 commited on
Commit
c975cea
1 Parent(s): b911a15

Training completed!

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: quality_model
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # quality_model
15
+
16
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0104
19
+ - Mse: 0.0104
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 8
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: linear
44
+ - num_epochs: 1
45
+
46
+ ### Training results
47
+
48
+ | Training Loss | Epoch | Step | Validation Loss | Mse |
49
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
50
+ | 0.0154 | 0.05 | 50 | 0.0106 | 0.0106 |
51
+ | 0.0172 | 0.11 | 100 | 0.0109 | 0.0109 |
52
+ | 0.0166 | 0.16 | 150 | 0.0199 | 0.0199 |
53
+ | 0.0132 | 0.22 | 200 | 0.0106 | 0.0106 |
54
+ | 0.0153 | 0.27 | 250 | 0.0120 | 0.0120 |
55
+ | 0.0131 | 0.32 | 300 | 0.0104 | 0.0104 |
56
+ | 0.0127 | 0.38 | 350 | 0.0104 | 0.0104 |
57
+ | 0.0143 | 0.43 | 400 | 0.0110 | 0.0110 |
58
+ | 0.0146 | 0.48 | 450 | 0.0113 | 0.0113 |
59
+ | 0.0119 | 0.54 | 500 | 0.0115 | 0.0115 |
60
+ | 0.0172 | 0.59 | 550 | 0.0107 | 0.0107 |
61
+ | 0.0111 | 0.65 | 600 | 0.0104 | 0.0104 |
62
+ | 0.0114 | 0.7 | 650 | 0.0105 | 0.0105 |
63
+ | 0.0219 | 0.75 | 700 | 0.0106 | 0.0106 |
64
+ | 0.0118 | 0.81 | 750 | 0.0122 | 0.0122 |
65
+ | 0.0184 | 0.86 | 800 | 0.0104 | 0.0104 |
66
+ | 0.0176 | 0.92 | 850 | 0.0104 | 0.0104 |
67
+ | 0.0137 | 0.97 | 900 | 0.0104 | 0.0104 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.39.1
73
+ - Pytorch 2.2.1+cu121
74
+ - Datasets 2.18.0
75
+ - Tokenizers 0.15.2