--- library_name: transformers language: - en license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8480392156862745 - name: F1 type: f1 value: 0.8923611111111112 --- # bert-base-uncased-finetuned-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4198 - Accuracy: 0.8480 - F1: 0.8924 - Combined Score: 0.8702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Combined Score | F1 | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:--------------:|:------:|:---------------:| | 0.5401 | 1.0 | 230 | 0.8358 | 0.8584 | 0.8810 | 0.3958 | | 0.3312 | 2.0 | 460 | 0.8431 | 0.8662 | 0.8893 | 0.3634 | | 0.1913 | 3.0 | 690 | 0.8529 | 0.8744 | 0.8958 | 0.4322 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1