--- license: mit base_model: indobenchmark/indobert-base-p1 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: indobert-base-p1-twitter-indonesia-sarcastic results: [] --- # indobert-base-p1-twitter-indonesia-sarcastic This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8125 - Accuracy: 0.8662 - F1: 0.7273 - Precision: 0.7385 - Recall: 0.7164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5101 | 1.0 | 59 | 0.4221 | 0.7836 | 0.6081 | 0.5556 | 0.6716 | | 0.3508 | 2.0 | 118 | 0.3479 | 0.8246 | 0.6713 | 0.6316 | 0.7164 | | 0.221 | 3.0 | 177 | 0.3511 | 0.8582 | 0.6935 | 0.7544 | 0.6418 | | 0.1157 | 4.0 | 236 | 0.4352 | 0.8396 | 0.6861 | 0.6714 | 0.7015 | | 0.0453 | 5.0 | 295 | 0.6923 | 0.8582 | 0.7077 | 0.7302 | 0.6866 | | 0.0192 | 6.0 | 354 | 0.7378 | 0.8694 | 0.7287 | 0.7581 | 0.7015 | | 0.0159 | 7.0 | 413 | 0.8860 | 0.8545 | 0.6723 | 0.7692 | 0.5970 | | 0.0165 | 8.0 | 472 | 0.8261 | 0.8694 | 0.7445 | 0.7286 | 0.7612 | | 0.0175 | 9.0 | 531 | 0.8732 | 0.8731 | 0.7424 | 0.7538 | 0.7313 | | 0.0062 | 10.0 | 590 | 0.9648 | 0.8657 | 0.7273 | 0.7385 | 0.7164 | | 0.0003 | 11.0 | 649 | 1.0108 | 0.8619 | 0.7176 | 0.7344 | 0.7015 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0