File size: 1,371 Bytes
f5e3080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from datasets import load_dataset, concatenate_datasets
from tokenizers import ByteLevelBPETokenizer
from pathlib import Path

dataset_language = "su"
validation_split_percentage = 10

# load dataset
# only the train subset for tokenizing purposes
oscar = load_dataset(
    "oscar", f"unshuffled_deduplicated_{dataset_language}", split="train",
)

cc100 = load_dataset("cc100", lang=dataset_language, split="train")

mc4 = load_dataset("mc4", dataset_language, split="train")

wiki_files = [str(x) for x in Path("../docs").glob("*.txt")]
wiki = load_dataset("text", data_files=wiki_files)

# want: text column only!
oscar = oscar.remove_columns("id")
mc4 = mc4.remove_columns(["url", "timestamp"])
cc100 = cc100.remove_columns("id")

dataset = concatenate_datasets([oscar, mc4, cc100, wiki["train"]])
dataset = dataset.train_test_split(test_size=validation_split_percentage / 100, seed=42)

# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()


def batch_iterator(batch_size=10000):
    for i in range(0, len(dataset), batch_size):
        yield dataset["train"][i : i + batch_size]["text"]


# Customized training
tokenizer.train_from_iterator(
    batch_iterator(),
    vocab_size=50265,
    min_frequency=2,
    special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>",],
)

# Save files to disk
model_dir = "."
tokenizer.save(f"{model_dir}/tokenizer.json")