Training in progress, step 500
Browse files- .gitignore +1 -0
- added_tokens.json +1 -0
- config.json +107 -0
- nohup.out +569 -0
- preprocessor_config.json +9 -0
- pytorch_model.bin +3 -0
- run.sh +34 -0
- run_speech_recognition_ctc.py +829 -0
- runs/Jan31_07-15-59_job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6/1643613501.488685/events.out.tfevents.1643613501.job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6.1151936.1 +3 -0
- runs/Jan31_07-15-59_job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6/events.out.tfevents.1643613501.job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6.1151936.0 +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.json +1 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
checkpoint-*/
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<s>": 1205, "</s>": 1206}
|
config.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 768,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.0,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.0,
|
57 |
+
"hidden_size": 1024,
|
58 |
+
"initializer_range": 0.02,
|
59 |
+
"intermediate_size": 4096,
|
60 |
+
"layer_norm_eps": 1e-05,
|
61 |
+
"layerdrop": 0.0,
|
62 |
+
"mask_feature_length": 64,
|
63 |
+
"mask_feature_min_masks": 0,
|
64 |
+
"mask_feature_prob": 0.25,
|
65 |
+
"mask_time_length": 10,
|
66 |
+
"mask_time_min_masks": 2,
|
67 |
+
"mask_time_prob": 0.75,
|
68 |
+
"model_type": "wav2vec2",
|
69 |
+
"num_adapter_layers": 3,
|
70 |
+
"num_attention_heads": 16,
|
71 |
+
"num_codevector_groups": 2,
|
72 |
+
"num_codevectors_per_group": 320,
|
73 |
+
"num_conv_pos_embedding_groups": 16,
|
74 |
+
"num_conv_pos_embeddings": 128,
|
75 |
+
"num_feat_extract_layers": 7,
|
76 |
+
"num_hidden_layers": 24,
|
77 |
+
"num_negatives": 100,
|
78 |
+
"output_hidden_size": 1024,
|
79 |
+
"pad_token_id": 1204,
|
80 |
+
"proj_codevector_dim": 768,
|
81 |
+
"tdnn_dilation": [
|
82 |
+
1,
|
83 |
+
2,
|
84 |
+
3,
|
85 |
+
1,
|
86 |
+
1
|
87 |
+
],
|
88 |
+
"tdnn_dim": [
|
89 |
+
512,
|
90 |
+
512,
|
91 |
+
512,
|
92 |
+
512,
|
93 |
+
1500
|
94 |
+
],
|
95 |
+
"tdnn_kernel": [
|
96 |
+
5,
|
97 |
+
3,
|
98 |
+
3,
|
99 |
+
1,
|
100 |
+
1
|
101 |
+
],
|
102 |
+
"torch_dtype": "float32",
|
103 |
+
"transformers_version": "4.17.0.dev0",
|
104 |
+
"use_weighted_layer_sum": false,
|
105 |
+
"vocab_size": 1207,
|
106 |
+
"xvector_output_dim": 512
|
107 |
+
}
|
nohup.out
ADDED
@@ -0,0 +1,569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
0%| | 0/1 [00:00<?, ?ba/s]
|
|
|
1 |
0%| | 0/1 [00:00<?, ?ba/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
0%| | 0/23 [00:00<?, ?ba/s]
|
|
|
3 |
0%| | 0/1 [00:00<?, ?ba/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
0%| | 0/34750 [00:00<?, ?it/s]
|
5 |
0%| | 1/34750 [00:06<64:28:32, 6.68s/it]
|
6 |
0%| | 2/34750 [00:12<57:43:53, 5.98s/it]
|
7 |
0%| | 3/34750 [00:17<54:31:03, 5.65s/it]
|
8 |
0%| | 4/34750 [00:22<50:51:50, 5.27s/it]
|
9 |
0%| | 5/34750 [00:26<48:33:10, 5.03s/it]
|
10 |
0%| | 6/34750 [00:31<46:50:38, 4.85s/it]
|
11 |
0%| | 7/34750 [00:35<45:36:23, 4.73s/it]
|
12 |
0%| | 8/34750 [00:40<44:29:00, 4.61s/it]
|
13 |
0%| | 9/34750 [00:44<43:10:17, 4.47s/it]
|
14 |
0%| | 10/34750 [00:48<42:06:37, 4.36s/it]
|
15 |
0%| | 11/34750 [00:52<40:57:19, 4.24s/it]
|
16 |
0%| | 12/34750 [00:56<39:38:33, 4.11s/it]
|
17 |
0%| | 13/34750 [00:59<38:31:48, 3.99s/it]
|
18 |
0%| | 14/34750 [01:03<37:54:45, 3.93s/it]
|
19 |
0%| | 15/34750 [01:07<36:35:46, 3.79s/it]
|
20 |
0%| | 16/34750 [01:10<35:45:25, 3.71s/it]
|
21 |
0%| | 17/34750 [01:13<34:45:16, 3.60s/it]
|
22 |
0%| | 18/34750 [01:17<33:59:39, 3.52s/it]
|
23 |
0%| | 19/34750 [01:20<33:05:56, 3.43s/it]
|
24 |
0%| | 20/34750 [01:23<32:33:40, 3.38s/it]
|
25 |
0%| | 21/34750 [01:26<32:01:32, 3.32s/it]
|
26 |
0%| | 22/34750 [01:30<31:21:02, 3.25s/it]
|
27 |
0%| | 23/34750 [01:33<30:52:11, 3.20s/it]
|
28 |
0%| | 24/34750 [01:36<30:24:22, 3.15s/it]
|
29 |
0%| | 25/34750 [01:39<29:53:04, 3.10s/it]
|
30 |
0%| | 26/34750 [01:42<29:25:40, 3.05s/it]
|
31 |
0%| | 27/34750 [01:44<28:34:56, 2.96s/it]
|
32 |
0%| | 28/34750 [01:47<28:11:40, 2.92s/it]
|
33 |
0%| | 29/34750 [01:50<27:54:42, 2.89s/it]
|
34 |
0%| | 30/34750 [01:53<27:27:22, 2.85s/it]
|
35 |
0%| | 31/34750 [01:55<27:01:28, 2.80s/it]
|
36 |
0%| | 32/34750 [01:58<26:40:58, 2.77s/it]
|
37 |
0%| | 33/34750 [02:01<26:24:14, 2.74s/it]
|
38 |
0%| | 34/34750 [02:03<25:52:04, 2.68s/it]
|
39 |
0%| | 35/34750 [02:06<25:43:25, 2.67s/it]
|
40 |
0%| | 36/34750 [02:08<25:11:08, 2.61s/it]
|
41 |
0%| | 37/34750 [02:11<24:28:28, 2.54s/it]
|
42 |
0%| | 38/34750 [02:13<23:51:25, 2.47s/it]
|
43 |
0%| | 39/34750 [02:15<23:19:33, 2.42s/it]
|
44 |
0%| | 40/34750 [02:18<22:52:11, 2.37s/it]
|
45 |
0%| | 41/34750 [02:20<22:39:10, 2.35s/it]
|
46 |
0%| | 42/34750 [02:22<22:09:25, 2.30s/it]
|
47 |
0%| | 43/34750 [02:24<21:47:00, 2.26s/it]
|
48 |
0%| | 44/34750 [02:26<21:18:01, 2.21s/it]
|
49 |
0%| | 45/34750 [02:28<20:48:32, 2.16s/it]
|
50 |
0%| | 46/34750 [02:31<20:29:08, 2.13s/it]
|
51 |
0%| | 47/34750 [02:32<20:01:46, 2.08s/it]
|
52 |
0%| | 48/34750 [02:34<19:24:47, 2.01s/it]
|
53 |
0%| | 49/34750 [02:36<18:42:30, 1.94s/it]
|
54 |
0%| | 50/34750 [02:38<17:57:24, 1.86s/it]
|
55 |
0%| | 51/34750 [02:44<31:34:21, 3.28s/it]
|
56 |
0%| | 52/34750 [02:50<38:06:08, 3.95s/it]
|
57 |
0%| | 53/34750 [02:55<41:11:56, 4.27s/it]
|
58 |
0%| | 54/34750 [03:00<42:58:47, 4.46s/it]
|
59 |
0%| | 55/34750 [03:04<43:32:12, 4.52s/it]
|
60 |
0%| | 56/34750 [03:09<43:38:21, 4.53s/it]
|
61 |
0%| | 57/34750 [03:13<43:18:06, 4.49s/it]
|
62 |
0%| | 58/34750 [03:18<42:30:15, 4.41s/it]
|
63 |
0%| | 59/34750 [03:22<42:02:18, 4.36s/it]
|
64 |
0%| | 60/34750 [03:26<41:31:48, 4.31s/it]
|
65 |
0%| | 61/34750 [03:30<40:32:29, 4.21s/it]
|
66 |
0%| | 62/34750 [03:34<39:22:08, 4.09s/it]
|
67 |
0%| | 63/34750 [03:38<38:18:34, 3.98s/it]
|
68 |
0%| | 64/34750 [03:41<37:37:25, 3.90s/it]
|
69 |
0%| | 65/34750 [03:45<36:45:09, 3.81s/it]
|
70 |
0%| | 66/34750 [03:48<35:44:42, 3.71s/it]
|
71 |
0%| | 67/34750 [03:52<35:21:38, 3.67s/it]
|
72 |
0%| | 68/34750 [03:55<34:38:18, 3.60s/it]
|
73 |
0%| | 69/34750 [03:59<33:35:03, 3.49s/it]
|
74 |
0%| | 70/34750 [04:02<32:57:42, 3.42s/it]
|
75 |
0%| | 71/34750 [04:05<32:30:58, 3.38s/it]
|
76 |
0%| | 72/34750 [04:08<31:58:21, 3.32s/it]
|
77 |
0%| | 73/34750 [04:12<31:39:22, 3.29s/it]
|
78 |
0%| | 74/34750 [04:15<30:59:41, 3.22s/it]
|
79 |
0%| | 75/34750 [04:18<30:22:31, 3.15s/it]
|
80 |
0%| | 76/34750 [04:21<30:16:16, 3.14s/it]
|
81 |
0%| | 77/34750 [04:24<30:00:28, 3.12s/it]
|
82 |
0%| | 78/34750 [04:27<29:35:28, 3.07s/it]
|
83 |
0%| | 79/34750 [04:30<28:52:03, 3.00s/it]
|
84 |
0%| | 80/34750 [04:32<28:15:57, 2.94s/it]
|
85 |
0%| | 81/34750 [04:35<27:39:57, 2.87s/it]
|
86 |
0%| | 82/34750 [04:38<27:02:17, 2.81s/it]
|
87 |
0%| | 83/34750 [04:40<26:42:09, 2.77s/it]
|
88 |
0%| | 84/34750 [04:43<26:15:39, 2.73s/it]
|
89 |
0%| | 85/34750 [04:46<26:03:43, 2.71s/it]
|
90 |
0%| | 86/34750 [04:48<25:34:47, 2.66s/it]
|
91 |
0%| | 87/34750 [04:51<25:14:44, 2.62s/it]
|
92 |
0%| | 88/34750 [04:53<24:52:15, 2.58s/it]
|
93 |
0%| | 89/34750 [04:56<24:13:33, 2.52s/it]
|
94 |
0%| | 90/34750 [04:58<23:45:50, 2.47s/it]
|
95 |
0%| | 91/34750 [05:00<23:15:35, 2.42s/it]
|
96 |
0%| | 92/34750 [05:03<22:43:29, 2.36s/it]
|
97 |
0%| | 93/34750 [05:05<22:28:51, 2.34s/it]
|
98 |
0%| | 94/34750 [05:07<21:54:02, 2.28s/it]
|
99 |
0%| | 95/34750 [05:09<21:18:57, 2.21s/it]
|
100 |
0%| | 96/34750 [05:11<20:44:18, 2.15s/it]
|
101 |
0%| | 97/34750 [05:13<20:04:09, 2.08s/it]
|
102 |
0%| | 98/34750 [05:15<19:41:42, 2.05s/it]
|
103 |
0%| | 99/34750 [05:17<19:05:17, 1.98s/it]
|
104 |
0%| | 100/34750 [05:18<18:21:38, 1.91s/it]
|
105 |
|
106 |
0%| | 100/34750 [05:18<18:21:38, 1.91s/it]
|
107 |
0%| | 101/34750 [05:25<31:59:06, 3.32s/it]
|
108 |
0%| | 102/34750 [05:31<38:44:13, 4.02s/it]
|
109 |
0%| | 103/34750 [05:36<42:04:31, 4.37s/it]
|
110 |
0%| | 104/34750 [05:41<43:20:27, 4.50s/it]
|
111 |
0%| | 105/34750 [05:45<43:33:06, 4.53s/it]
|
112 |
0%| | 106/34750 [05:50<43:01:31, 4.47s/it]
|
113 |
0%| | 107/34750 [05:54<42:35:58, 4.43s/it]
|
114 |
0%| | 108/34750 [05:58<41:36:32, 4.32s/it]
|
115 |
0%| | 109/34750 [06:02<40:49:12, 4.24s/it]
|
116 |
0%| | 110/34750 [06:06<40:24:00, 4.20s/it]
|
117 |
0%| | 111/34750 [06:10<39:21:11, 4.09s/it]
|
118 |
0%| | 112/34750 [06:14<38:20:20, 3.98s/it]
|
119 |
0%| | 113/34750 [06:18<37:45:38, 3.92s/it]
|
120 |
0%| | 114/34750 [06:21<36:57:18, 3.84s/it]
|
121 |
0%| | 115/34750 [06:25<36:23:40, 3.78s/it]
|
122 |
0%| | 116/34750 [06:28<35:34:12, 3.70s/it]
|
123 |
0%| | 117/34750 [06:32<34:43:35, 3.61s/it]
|
124 |
0%| | 118/34750 [06:35<33:56:27, 3.53s/it]
|
125 |
0%| | 119/34750 [06:38<33:21:27, 3.47s/it]
|
126 |
0%| | 120/34750 [06:42<32:59:05, 3.43s/it]
|
127 |
0%| | 121/34750 [06:45<32:17:52, 3.36s/it]
|
128 |
0%| | 122/34750 [06:48<31:38:10, 3.29s/it]
|
129 |
0%| | 123/34750 [06:51<31:05:15, 3.23s/it]
|
130 |
0%| | 124/34750 [06:54<30:46:22, 3.20s/it]
|
131 |
0%| | 125/34750 [06:57<30:10:54, 3.14s/it]
|
132 |
0%| | 126/34750 [07:00<29:41:42, 3.09s/it]
|
133 |
0%| | 127/34750 [07:03<29:03:34, 3.02s/it]
|
134 |
0%| | 128/34750 [07:06<28:35:44, 2.97s/it]
|
135 |
0%| | 129/34750 [07:09<28:00:19, 2.91s/it]
|
136 |
0%| | 130/34750 [07:12<27:21:27, 2.84s/it]
|
137 |
0%| | 131/34750 [07:14<27:10:16, 2.83s/it]
|
138 |
0%| | 132/34750 [07:17<26:33:47, 2.76s/it]
|
139 |
0%| | 133/34750 [07:20<26:14:29, 2.73s/it]
|
140 |
0%| | 134/34750 [07:22<25:45:14, 2.68s/it]
|
141 |
0%| | 135/34750 [07:25<25:17:13, 2.63s/it]
|
142 |
0%| | 136/34750 [07:27<24:57:13, 2.60s/it]
|
143 |
0%| | 137/34750 [07:30<24:24:51, 2.54s/it]
|
144 |
0%| | 138/34750 [07:32<23:51:55, 2.48s/it]
|
145 |
0%| | 139/34750 [07:34<23:21:09, 2.43s/it]
|
146 |
0%| | 140/34750 [07:36<22:52:59, 2.38s/it]
|
147 |
0%| | 141/34750 [07:39<22:43:48, 2.36s/it]
|
148 |
0%| | 142/34750 [07:41<22:20:24, 2.32s/it]
|
149 |
0%| | 143/34750 [07:43<22:04:04, 2.30s/it]
|
150 |
0%| | 144/34750 [07:45<21:37:56, 2.25s/it]
|
151 |
0%| | 145/34750 [07:47<21:03:48, 2.19s/it]
|
152 |
0%| | 146/34750 [07:50<20:40:12, 2.15s/it]
|
153 |
0%| | 147/34750 [07:51<20:03:46, 2.09s/it]
|
154 |
0%| | 148/34750 [07:53<19:25:14, 2.02s/it]
|
155 |
0%| | 149/34750 [07:55<18:55:40, 1.97s/it]
|
156 |
0%| | 150/34750 [07:57<18:20:39, 1.91s/it]
|
157 |
0%| | 151/34750 [08:03<31:24:03, 3.27s/it]
|
158 |
0%| | 152/34750 [08:09<37:53:01, 3.94s/it]
|
159 |
0%| | 153/34750 [08:14<41:53:08, 4.36s/it]
|
160 |
0%| | 154/34750 [08:19<43:48:48, 4.56s/it]
|
161 |
0%| | 155/34750 [08:24<43:58:26, 4.58s/it]
|
162 |
0%| | 156/34750 [08:28<43:45:25, 4.55s/it]
|
163 |
0%| | 157/34750 [08:33<43:43:02, 4.55s/it]
|
164 |
0%| | 158/34750 [08:37<42:58:24, 4.47s/it]
|
165 |
0%| | 159/34750 [08:41<41:59:46, 4.37s/it]
|
166 |
0%| | 160/34750 [08:45<40:59:58, 4.27s/it]
|
167 |
0%| | 161/34750 [08:49<40:07:34, 4.18s/it]
|
168 |
0%| | 162/34750 [08:53<39:31:01, 4.11s/it]
|
169 |
0%| | 163/34750 [08:57<38:50:29, 4.04s/it]
|
170 |
0%| | 164/34750 [09:01<38:04:36, 3.96s/it]
|
171 |
0%| | 165/34750 [09:05<37:16:49, 3.88s/it]
|
172 |
0%| | 166/34750 [09:08<36:26:52, 3.79s/it]
|
173 |
0%| | 167/34750 [09:12<35:48:44, 3.73s/it]
|
174 |
0%| | 168/34750 [09:15<35:16:30, 3.67s/it]
|
175 |
0%| | 169/34750 [09:19<34:42:11, 3.61s/it]
|
176 |
0%| | 170/34750 [09:22<33:58:16, 3.54s/it]
|
177 |
0%| | 171/34750 [09:25<33:07:26, 3.45s/it]
|
178 |
0%| | 172/34750 [09:29<32:20:46, 3.37s/it]
|
179 |
0%| | 173/34750 [09:32<31:43:56, 3.30s/it]
|
180 |
1%| | 174/34750 [09:35<31:16:09, 3.26s/it]
|
181 |
1%| | 175/34750 [09:38<31:01:53, 3.23s/it]
|
182 |
1%| | 176/34750 [09:41<30:33:05, 3.18s/it]
|
183 |
1%| | 177/34750 [09:44<30:02:14, 3.13s/it]
|
184 |
1%| | 178/34750 [09:47<29:31:44, 3.07s/it]
|
185 |
1%| | 179/34750 [09:50<28:51:20, 3.00s/it]
|
186 |
1%| | 180/34750 [09:53<28:07:59, 2.93s/it]
|
187 |
1%| | 181/34750 [09:55<27:42:48, 2.89s/it]
|
188 |
1%| | 182/34750 [09:58<27:05:20, 2.82s/it]
|
189 |
1%| | 183/34750 [10:01<26:42:02, 2.78s/it]
|
190 |
1%| | 184/34750 [10:03<26:09:40, 2.72s/it]
|
191 |
1%| | 185/34750 [10:06<25:42:04, 2.68s/it]
|
192 |
1%| | 186/34750 [10:08<25:13:14, 2.63s/it]
|
193 |
1%| | 187/34750 [10:11<24:58:54, 2.60s/it]
|
194 |
1%| | 188/34750 [10:13<24:31:39, 2.55s/it]
|
195 |
1%| | 189/34750 [10:16<23:54:11, 2.49s/it]
|
196 |
1%| | 190/34750 [10:18<23:19:20, 2.43s/it]
|
197 |
1%| | 191/34750 [10:20<22:53:19, 2.38s/it]
|
198 |
1%| | 192/34750 [10:23<22:30:07, 2.34s/it]
|
199 |
1%| | 193/34750 [10:25<21:58:47, 2.29s/it]
|
200 |
1%| | 194/34750 [10:27<21:25:10, 2.23s/it]
|
201 |
1%| | 195/34750 [10:29<20:52:07, 2.17s/it]
|
202 |
1%| | 196/34750 [10:31<20:21:29, 2.12s/it]
|
203 |
1%| | 197/34750 [10:33<19:45:12, 2.06s/it]
|
204 |
1%| | 198/34750 [10:35<19:10:57, 2.00s/it]
|
205 |
1%| | 199/34750 [10:36<18:35:35, 1.94s/it]
|
206 |
1%| | 200/34750 [10:38<17:58:57, 1.87s/it]
|
207 |
|
208 |
1%| | 200/34750 [10:38<17:58:57, 1.87s/it]
|
209 |
1%| | 201/34750 [10:44<30:29:43, 3.18s/it]
|
210 |
1%| | 202/34750 [10:50<36:43:22, 3.83s/it]
|
211 |
1%| | 203/34750 [10:55<40:17:17, 4.20s/it]
|
212 |
1%| | 204/34750 [11:00<41:57:33, 4.37s/it]
|
213 |
1%| | 205/34750 [11:04<42:29:54, 4.43s/it]
|
214 |
1%| | 206/34750 [11:09<42:44:42, 4.45s/it]
|
215 |
1%| | 207/34750 [11:13<41:56:02, 4.37s/it]
|
216 |
1%| | 208/34750 [11:17<41:20:03, 4.31s/it]
|
217 |
1%| | 209/34750 [11:21<40:36:04, 4.23s/it]
|
218 |
1%| | 210/34750 [11:25<40:15:07, 4.20s/it]
|
219 |
1%| | 211/34750 [11:29<39:13:51, 4.09s/it]
|
220 |
1%| | 212/34750 [11:33<38:18:15, 3.99s/it]
|
221 |
1%| | 213/34750 [11:37<37:31:08, 3.91s/it]
|
222 |
1%| | 214/34750 [11:40<36:50:20, 3.84s/it]
|
223 |
1%| | 215/34750 [11:44<36:03:03, 3.76s/it]
|
224 |
1%| | 216/34750 [11:47<35:19:22, 3.68s/it]
|
225 |
1%| | 217/34750 [11:51<34:49:41, 3.63s/it]
|
226 |
1%| | 218/34750 [11:54<33:58:09, 3.54s/it]
|
227 |
1%| | 219/34750 [11:57<33:17:16, 3.47s/it]
|
228 |
1%| | 220/34750 [12:01<32:42:24, 3.41s/it]
|
229 |
1%| | 221/34750 [12:04<32:12:04, 3.36s/it]
|
230 |
1%| | 222/34750 [12:07<31:21:23, 3.27s/it]
|
231 |
1%| | 223/34750 [12:10<30:51:33, 3.22s/it]
|
232 |
1%| | 224/34750 [12:13<30:13:54, 3.15s/it]
|
233 |
1%| | 225/34750 [12:16<29:45:11, 3.10s/it]
|
234 |
1%| | 226/34750 [12:19<29:23:35, 3.06s/it]
|
235 |
1%| | 227/34750 [12:22<28:42:32, 2.99s/it]
|
236 |
1%| | 228/34750 [12:25<28:22:04, 2.96s/it]
|
237 |
1%| | 229/34750 [12:28<27:48:51, 2.90s/it]
|
238 |
1%| | 230/34750 [12:30<27:11:50, 2.84s/it]
|
239 |
1%| | 231/34750 [12:33<26:35:09, 2.77s/it]
|
240 |
1%| | 232/34750 [12:35<26:10:51, 2.73s/it]
|
241 |
1%| | 233/34750 [12:38<25:52:41, 2.70s/it]
|
242 |
1%| | 234/34750 [12:41<25:20:57, 2.64s/it]
|
243 |
1%| | 235/34750 [12:43<24:56:17, 2.60s/it]
|
244 |
1%| | 236/34750 [12:45<24:12:05, 2.52s/it]
|
245 |
1%| | 237/34750 [12:48<23:36:45, 2.46s/it]
|
246 |
1%| | 238/34750 [12:50<23:15:05, 2.43s/it]
|
247 |
1%| | 239/34750 [12:52<22:55:05, 2.39s/it]
|
248 |
1%| | 240/34750 [12:55<22:24:01, 2.34s/it]
|
249 |
1%| | 241/34750 [12:57<22:06:03, 2.31s/it]
|
250 |
1%| | 242/34750 [12:59<21:38:36, 2.26s/it]
|
251 |
1%| | 243/34750 [13:01<21:15:14, 2.22s/it]
|
252 |
1%| | 244/34750 [13:03<20:47:51, 2.17s/it]
|
253 |
1%| | 245/34750 [13:05<20:23:43, 2.13s/it]
|
254 |
1%| | 246/34750 [13:07<20:17:09, 2.12s/it]
|
255 |
1%| | 247/34750 [13:09<19:45:30, 2.06s/it]
|
256 |
1%| | 248/34750 [13:11<19:07:56, 2.00s/it]
|
257 |
1%| | 249/34750 [13:13<18:36:53, 1.94s/it]
|
258 |
1%| | 250/34750 [13:15<17:51:35, 1.86s/it]
|
259 |
1%| | 251/34750 [13:21<31:21:56, 3.27s/it]
|
260 |
1%| | 252/34750 [13:27<37:56:29, 3.96s/it]
|
261 |
1%| | 253/34750 [13:32<41:27:01, 4.33s/it]
|
262 |
1%| | 254/34750 [13:37<43:20:41, 4.52s/it]
|
263 |
1%| | 255/34750 [13:42<43:46:29, 4.57s/it]
|
264 |
1%| | 256/34750 [13:46<44:07:24, 4.60s/it]
|
265 |
1%| | 257/34750 [13:51<43:48:40, 4.57s/it]
|
266 |
1%| | 258/34750 [13:55<42:57:47, 4.48s/it]
|
267 |
1%| | 259/34750 [13:59<42:16:34, 4.41s/it]
|
268 |
1%| | 260/34750 [14:03<41:36:00, 4.34s/it]
|
269 |
1%| | 261/34750 [14:07<40:22:55, 4.22s/it]
|
270 |
1%| | 262/34750 [14:11<39:34:28, 4.13s/it]
|
271 |
1%| | 263/34750 [14:15<38:38:45, 4.03s/it]
|
272 |
1%| | 264/34750 [14:19<37:37:21, 3.93s/it]
|
273 |
1%| | 265/34750 [14:23<37:05:51, 3.87s/it]
|
274 |
1%| | 266/34750 [14:26<36:12:42, 3.78s/it]
|
275 |
1%| | 267/34750 [14:30<35:15:32, 3.68s/it]
|
276 |
1%| | 268/34750 [14:33<34:42:08, 3.62s/it]
|
277 |
1%| | 269/34750 [14:36<34:05:26, 3.56s/it]
|
278 |
1%| | 270/34750 [14:40<33:17:54, 3.48s/it]
|
279 |
1%| | 271/34750 [14:43<32:24:37, 3.38s/it]
|
280 |
1%| | 272/34750 [14:46<31:57:35, 3.34s/it]
|
281 |
1%| | 273/34750 [14:49<31:33:17, 3.29s/it]
|
282 |
1%| | 274/34750 [14:52<31:13:36, 3.26s/it]
|
283 |
1%| | 275/34750 [14:56<30:33:40, 3.19s/it]
|
284 |
1%| | 276/34750 [14:58<29:57:52, 3.13s/it]
|
285 |
1%| | 277/34750 [15:01<29:24:24, 3.07s/it]
|
286 |
1%| | 278/34750 [15:04<28:49:51, 3.01s/it]
|
287 |
1%| | 279/34750 [15:07<28:08:27, 2.94s/it]
|
288 |
1%| | 280/34750 [15:10<27:22:33, 2.86s/it]
|
289 |
1%| | 281/34750 [15:12<26:57:28, 2.82s/it]
|
290 |
1%| | 282/34750 [15:15<26:27:44, 2.76s/it]
|
291 |
1%| | 283/34750 [15:18<26:13:36, 2.74s/it]
|
292 |
1%| | 284/34750 [15:21<26:13:15, 2.74s/it]
|
293 |
1%| | 285/34750 [15:23<25:57:40, 2.71s/it]
|
294 |
1%| | 286/34750 [15:26<25:28:50, 2.66s/it]
|
295 |
1%| | 287/34750 [15:28<25:04:44, 2.62s/it]
|
296 |
1%| | 288/34750 [15:31<24:26:40, 2.55s/it]
|
297 |
1%| | 289/34750 [15:33<23:41:08, 2.47s/it]
|
298 |
1%| | 290/34750 [15:35<23:22:38, 2.44s/it]
|
299 |
1%| | 291/34750 [15:38<22:57:12, 2.40s/it]
|
300 |
1%| | 292/34750 [15:40<22:17:49, 2.33s/it]
|
301 |
1%| | 293/34750 [15:42<21:41:20, 2.27s/it]
|
302 |
1%| | 294/34750 [15:44<21:08:58, 2.21s/it]
|
303 |
1%| | 295/34750 [15:46<20:50:26, 2.18s/it]
|
304 |
1%| | 296/34750 [15:48<20:32:20, 2.15s/it]
|
305 |
1%| | 297/34750 [15:50<19:59:15, 2.09s/it]
|
306 |
1%| | 298/34750 [15:52<19:26:06, 2.03s/it]
|
307 |
1%| | 299/34750 [15:54<18:49:19, 1.97s/it]
|
308 |
1%| | 300/34750 [15:56<18:10:12, 1.90s/it]
|
309 |
|
310 |
1%| | 300/34750 [15:56<18:10:12, 1.90s/it]
|
311 |
1%| | 301/34750 [16:02<31:58:03, 3.34s/it]
|
312 |
1%| | 302/34750 [16:08<37:55:08, 3.96s/it]
|
313 |
1%| | 303/34750 [16:13<41:36:50, 4.35s/it]
|
314 |
1%| | 304/34750 [16:18<43:17:31, 4.52s/it]
|
315 |
1%| | 305/34750 [16:23<43:51:54, 4.58s/it]
|
316 |
1%| | 306/34750 [16:27<43:56:28, 4.59s/it]
|
317 |
1%| | 307/34750 [16:32<43:43:04, 4.57s/it]
|
318 |
1%| | 308/34750 [16:36<42:48:58, 4.48s/it]
|
319 |
1%| | 309/34750 [16:40<42:16:02, 4.42s/it]
|
320 |
1%| | 310/34750 [16:44<41:16:33, 4.31s/it]
|
321 |
1%| | 311/34750 [16:48<40:43:30, 4.26s/it]
|
322 |
1%| | 312/34750 [16:52<39:52:16, 4.17s/it]
|
323 |
1%| | 313/34750 [16:56<38:22:24, 4.01s/it]
|
324 |
1%| | 314/34750 [17:00<37:28:22, 3.92s/it]
|
325 |
1%| | 315/34750 [17:03<36:46:54, 3.85s/it]
|
326 |
1%| | 316/34750 [17:07<35:58:05, 3.76s/it]
|
327 |
1%| | 317/34750 [17:10<35:05:57, 3.67s/it]
|
328 |
1%| | 318/34750 [17:14<34:07:17, 3.57s/it]
|
329 |
1%| | 319/34750 [17:17<33:31:36, 3.51s/it]
|
330 |
1%| | 320/34750 [17:20<32:47:49, 3.43s/it]
|
331 |
1%| | 321/34750 [17:24<32:01:42, 3.35s/it]
|
332 |
1%| | 322/34750 [17:27<31:36:22, 3.30s/it]
|
333 |
1%| | 323/34750 [17:30<31:07:44, 3.26s/it]
|
334 |
1%| | 324/34750 [17:33<30:53:20, 3.23s/it]
|
335 |
1%| | 325/34750 [17:36<30:26:15, 3.18s/it]
|
336 |
1%| | 326/34750 [17:39<29:47:46, 3.12s/it]
|
337 |
1%| | 327/34750 [17:42<29:12:55, 3.06s/it]
|
338 |
1%| | 328/34750 [17:45<28:47:06, 3.01s/it]
|
339 |
1%| | 329/34750 [17:48<28:08:18, 2.94s/it]
|
340 |
1%| | 330/34750 [17:50<27:36:09, 2.89s/it]
|
341 |
1%| | 331/34750 [17:53<27:21:46, 2.86s/it]
|
342 |
1%| | 332/34750 [17:56<27:03:08, 2.83s/it]
|
343 |
1%| | 333/34750 [17:59<26:20:26, 2.76s/it]
|
344 |
1%| | 334/34750 [18:01<26:12:57, 2.74s/it]
|
345 |
1%| | 335/34750 [18:04<25:41:28, 2.69s/it]
|
346 |
1%| | 336/34750 [18:06<25:12:54, 2.64s/it]
|
347 |
1%| | 337/34750 [18:09<24:41:53, 2.58s/it]
|
348 |
1%| | 338/34750 [18:11<24:12:43, 2.53s/it]
|
349 |
1%| | 339/34750 [18:14<23:30:50, 2.46s/it]
|
350 |
1%| | 340/34750 [18:16<22:57:39, 2.40s/it]
|
351 |
1%| | 341/34750 [18:18<22:20:00, 2.34s/it]
|
352 |
1%| | 342/34750 [18:20<22:25:17, 2.35s/it]
|
353 |
1%| | 343/34750 [18:23<22:01:56, 2.31s/it]
|
354 |
1%| | 344/34750 [18:25<21:44:05, 2.27s/it]
|
355 |
1%| | 345/34750 [18:27<21:18:47, 2.23s/it]
|
356 |
1%| | 346/34750 [18:29<20:40:52, 2.16s/it]
|
357 |
1%| | 347/34750 [18:31<20:05:18, 2.10s/it]
|
358 |
1%| | 348/34750 [18:33<19:18:53, 2.02s/it]
|
359 |
1%| | 349/34750 [18:34<18:30:11, 1.94s/it]
|
360 |
1%| | 350/34750 [18:36<17:49:48, 1.87s/it]
|
361 |
1%| | 351/34750 [18:43<30:43:41, 3.22s/it]
|
362 |
1%| | 352/34750 [18:48<36:25:36, 3.81s/it]
|
363 |
1%| | 353/34750 [18:53<40:38:35, 4.25s/it]
|
364 |
1%| | 354/34750 [18:58<42:21:14, 4.43s/it]
|
365 |
1%| | 355/34750 [19:03<43:07:44, 4.51s/it]
|
366 |
1%| | 356/34750 [19:07<42:26:41, 4.44s/it]
|
367 |
1%| | 357/34750 [19:11<41:53:53, 4.39s/it]
|
368 |
1%| | 358/34750 [19:15<40:39:51, 4.26s/it]
|
369 |
1%| | 359/34750 [19:19<40:16:11, 4.22s/it]
|
370 |
1%| | 360/34750 [19:23<39:41:45, 4.16s/it]
|
371 |
1%| | 361/34750 [19:27<38:47:40, 4.06s/it]
|
372 |
1%| | 362/34750 [19:31<38:03:09, 3.98s/it]
|
373 |
1%| | 363/34750 [19:35<37:17:42, 3.90s/it]
|
374 |
1%| | 364/34750 [19:38<36:50:26, 3.86s/it]
|
375 |
1%| | 365/34750 [19:42<36:07:43, 3.78s/it]
|
376 |
1%| | 366/34750 [19:45<35:02:58, 3.67s/it]
|
377 |
1%| | 367/34750 [19:49<34:07:02, 3.57s/it]
|
378 |
1%| | 368/34750 [19:52<33:13:38, 3.48s/it]
|
379 |
1%| | 369/34750 [19:55<32:49:53, 3.44s/it]
|
380 |
1%| | 370/34750 [19:58<32:19:00, 3.38s/it]
|
381 |
1%| | 371/34750 [20:02<31:58:00, 3.35s/it]
|
382 |
1%| | 372/34750 [20:05<31:12:15, 3.27s/it]
|
383 |
1%| | 373/34750 [20:08<30:34:34, 3.20s/it]
|
384 |
1%| | 374/34750 [20:11<30:28:31, 3.19s/it]
|
385 |
1%| | 375/34750 [20:14<29:47:15, 3.12s/it]
|
386 |
1%| | 376/34750 [20:17<29:13:07, 3.06s/it]
|
387 |
1%| | 377/34750 [20:20<28:44:15, 3.01s/it]
|
388 |
1%| | 378/34750 [20:23<28:26:34, 2.98s/it]
|
389 |
1%| | 379/34750 [20:26<27:56:33, 2.93s/it]
|
390 |
1%| | 380/34750 [20:28<27:25:39, 2.87s/it]
|
391 |
1%| | 381/34750 [20:31<26:59:30, 2.83s/it]
|
392 |
1%| | 382/34750 [20:34<26:29:51, 2.78s/it]
|
393 |
1%| | 383/34750 [20:36<25:56:46, 2.72s/it]
|
394 |
1%| | 384/34750 [20:39<25:35:53, 2.68s/it]
|
395 |
1%| | 385/34750 [20:41<25:02:32, 2.62s/it]
|
396 |
1%| | 386/34750 [20:44<24:39:09, 2.58s/it]
|
397 |
1%| | 387/34750 [20:46<24:21:30, 2.55s/it]
|
398 |
1%| | 388/34750 [20:49<23:38:31, 2.48s/it]
|
399 |
1%| | 389/34750 [20:51<23:10:07, 2.43s/it]
|
400 |
1%| | 390/34750 [20:53<22:38:55, 2.37s/it]
|
401 |
1%| | 391/34750 [20:55<22:09:02, 2.32s/it]
|
402 |
1%| | 392/34750 [20:58<21:49:26, 2.29s/it]
|
403 |
1%| | 393/34750 [21:00<21:26:35, 2.25s/it]
|
404 |
1%| | 394/34750 [21:02<21:03:47, 2.21s/it]
|
405 |
1%| | 395/34750 [21:04<20:38:57, 2.16s/it]
|
406 |
1%| | 396/34750 [21:06<20:07:32, 2.11s/it]
|
407 |
1%| | 397/34750 [21:08<19:41:03, 2.06s/it]
|
408 |
1%| | 398/34750 [21:10<19:14:02, 2.02s/it]
|
409 |
1%| | 399/34750 [21:12<18:36:22, 1.95s/it]
|
410 |
1%| | 400/34750 [21:13<17:49:36, 1.87s/it]
|
411 |
|
412 |
1%| | 400/34750 [21:13<17:49:36, 1.87s/it]
|
413 |
1%| | 401/34750 [21:20<31:30:35, 3.30s/it]
|
414 |
1%| | 402/34750 [21:26<38:21:07, 4.02s/it]
|
415 |
1%| | 403/34750 [21:31<41:14:36, 4.32s/it]
|
416 |
1%| | 404/34750 [21:35<42:39:12, 4.47s/it]
|
417 |
1%| | 405/34750 [21:40<43:39:49, 4.58s/it]
|
418 |
1%| | 406/34750 [21:45<44:18:50, 4.65s/it]
|
419 |
1%| | 407/34750 [21:49<43:34:28, 4.57s/it]
|
420 |
1%| | 408/34750 [21:54<42:43:07, 4.48s/it]
|
421 |
1%| | 409/34750 [21:58<42:01:38, 4.41s/it]
|
422 |
1%| | 410/34750 [22:02<41:12:36, 4.32s/it]
|
423 |
1%| | 411/34750 [22:06<40:08:54, 4.21s/it]
|
424 |
1%| | 412/34750 [22:10<39:03:22, 4.09s/it]
|
425 |
1%| | 413/34750 [22:14<38:34:32, 4.04s/it]
|
426 |
1%| | 414/34750 [22:17<37:40:02, 3.95s/it]
|
427 |
1%| | 415/34750 [22:21<36:37:15, 3.84s/it]
|
428 |
1%| | 416/34750 [22:25<36:12:41, 3.80s/it]
|
429 |
1%| | 417/34750 [22:28<35:24:02, 3.71s/it]
|
430 |
1%| | 418/34750 [22:32<34:40:10, 3.64s/it]
|
431 |
1%| | 419/34750 [22:35<33:57:25, 3.56s/it]
|
432 |
1%| | 420/34750 [22:38<33:08:40, 3.48s/it]
|
433 |
1%| | 421/34750 [22:42<32:18:45, 3.39s/it]
|
434 |
1%| | 422/34750 [22:45<31:30:05, 3.30s/it]
|
435 |
1%| | 423/34750 [22:48<30:52:25, 3.24s/it]
|
436 |
1%| | 424/34750 [22:51<30:20:07, 3.18s/it]
|
437 |
1%| | 425/34750 [22:54<30:16:08, 3.17s/it]
|
438 |
1%| | 426/34750 [22:57<29:37:23, 3.11s/it]
|
439 |
1%| | 427/34750 [23:00<29:02:17, 3.05s/it]
|
440 |
1%| | 428/34750 [23:03<28:32:26, 2.99s/it]
|
441 |
1%| | 429/34750 [23:05<27:55:36, 2.93s/it]
|
442 |
1%| | 430/34750 [23:08<27:22:38, 2.87s/it]
|
443 |
1%| | 431/34750 [23:11<26:42:52, 2.80s/it]
|
444 |
1%| | 432/34750 [23:13<26:09:53, 2.74s/it]
|
445 |
1%| | 433/34750 [23:16<25:33:50, 2.68s/it]
|
446 |
1%| | 434/34750 [23:19<25:26:14, 2.67s/it]
|
447 |
1%|โ | 435/34750 [23:21<25:08:01, 2.64s/it]
|
448 |
1%|โ | 436/34750 [23:24<24:28:11, 2.57s/it]
|
449 |
1%|โ | 437/34750 [23:26<23:45:04, 2.49s/it]
|
450 |
1%|โ | 438/34750 [23:28<23:09:23, 2.43s/it]
|
451 |
1%|โ | 439/34750 [23:30<22:35:50, 2.37s/it]
|
452 |
1%|โ | 440/34750 [23:33<22:09:21, 2.32s/it]
|
453 |
1%|โ | 441/34750 [23:35<21:32:40, 2.26s/it]
|
454 |
1%|โ | 442/34750 [23:37<21:02:35, 2.21s/it]
|
455 |
1%|โ | 443/34750 [23:39<20:37:00, 2.16s/it]
|
456 |
1%|โ | 444/34750 [23:41<20:17:59, 2.13s/it]
|
457 |
1%|โ | 445/34750 [23:43<20:03:47, 2.11s/it]
|
458 |
1%|โ | 446/34750 [23:45<19:49:33, 2.08s/it]
|
459 |
1%|โ | 447/34750 [23:47<19:19:48, 2.03s/it]
|
460 |
1%|โ | 448/34750 [23:49<18:48:10, 1.97s/it]
|
461 |
1%|โ | 449/34750 [23:51<18:28:39, 1.94s/it]
|
462 |
1%|โ | 450/34750 [23:52<17:45:13, 1.86s/it]
|
463 |
1%|โ | 451/34750 [23:59<30:08:37, 3.16s/it]
|
464 |
1%|โ | 452/34750 [24:04<37:08:51, 3.90s/it]
|
465 |
1%|โ | 453/34750 [24:09<40:16:04, 4.23s/it]
|
466 |
1%|โ | 454/34750 [24:14<41:18:56, 4.34s/it]
|
467 |
1%|โ | 455/34750 [24:18<42:06:45, 4.42s/it]
|
468 |
1%|โ | 456/34750 [24:23<41:51:37, 4.39s/it]
|
469 |
1%|โ | 457/34750 [24:27<41:49:04, 4.39s/it]
|
470 |
1%|โ | 458/34750 [24:31<41:03:14, 4.31s/it]
|
471 |
1%|โ | 459/34750 [24:35<40:29:08, 4.25s/it]
|
472 |
1%|โ | 460/34750 [24:39<39:39:10, 4.16s/it]
|
473 |
1%|โ | 461/34750 [24:43<38:56:37, 4.09s/it]
|
474 |
1%|โ | 462/34750 [24:47<38:30:33, 4.04s/it]
|
475 |
1%|โ | 463/34750 [24:51<37:55:04, 3.98s/it]
|
476 |
1%|โ | 464/34750 [24:55<37:01:56, 3.89s/it]
|
477 |
1%|โ | 465/34750 [24:58<36:01:26, 3.78s/it]
|
478 |
1%|โ | 466/34750 [25:02<35:06:25, 3.69s/it]
|
479 |
1%|โ | 467/34750 [25:05<34:18:13, 3.60s/it]
|
480 |
1%|โ | 468/34750 [25:08<33:47:41, 3.55s/it]
|
481 |
1%|โ | 469/34750 [25:12<32:59:07, 3.46s/it]
|
482 |
1%|โ | 470/34750 [25:15<32:19:51, 3.40s/it]
|
483 |
1%|โ | 471/34750 [25:18<31:52:25, 3.35s/it]
|
484 |
1%|โ | 472/34750 [25:21<31:32:56, 3.31s/it]
|
485 |
1%|โ | 473/34750 [25:24<30:51:50, 3.24s/it]
|
486 |
1%|โ | 474/34750 [25:28<30:17:54, 3.18s/it]
|
487 |
1%|โ | 475/34750 [25:31<29:52:40, 3.14s/it]
|
488 |
1%|โ | 476/34750 [25:34<29:21:56, 3.08s/it]
|
489 |
1%|โ | 477/34750 [25:37<29:08:35, 3.06s/it]
|
490 |
1%|โ | 478/34750 [25:39<28:25:03, 2.99s/it]
|
491 |
1%|โ | 479/34750 [25:42<28:15:33, 2.97s/it]
|
492 |
1%|โ | 480/34750 [25:45<27:32:19, 2.89s/it]
|
493 |
1%|โ | 481/34750 [25:48<27:02:24, 2.84s/it]
|
494 |
1%|โ | 482/34750 [25:50<26:38:29, 2.80s/it]
|
495 |
1%|โ | 483/34750 [25:53<26:09:21, 2.75s/it]
|
496 |
1%|โ | 484/34750 [25:56<26:07:06, 2.74s/it]
|
497 |
1%|โ | 485/34750 [25:58<25:46:30, 2.71s/it]
|
498 |
1%|โ | 486/34750 [26:01<25:11:05, 2.65s/it]
|
499 |
1%|โ | 487/34750 [26:03<24:41:17, 2.59s/it]
|
500 |
1%|โ | 488/34750 [26:06<24:11:10, 2.54s/it]
|
501 |
1%|โ | 489/34750 [26:08<23:45:21, 2.50s/it]
|
502 |
1%|โ | 490/34750 [26:10<23:12:34, 2.44s/it]
|
503 |
1%|โ | 491/34750 [26:13<22:40:29, 2.38s/it]
|
504 |
1%|โ | 492/34750 [26:15<22:19:29, 2.35s/it]
|
505 |
1%|โ | 493/34750 [26:17<22:03:05, 2.32s/it]
|
506 |
1%|โ | 494/34750 [26:19<21:32:01, 2.26s/it]
|
507 |
1%|โ | 495/34750 [26:21<21:00:30, 2.21s/it]
|
508 |
1%|โ | 496/34750 [26:23<20:25:39, 2.15s/it]
|
509 |
1%|โ | 497/34750 [26:25<19:55:06, 2.09s/it]
|
510 |
1%|โ | 498/34750 [26:27<19:13:21, 2.02s/it]
|
511 |
1%|โ | 499/34750 [26:29<18:38:20, 1.96s/it]
|
512 |
1%|โ | 500/34750 [26:31<17:50:56, 1.88s/it]
|
513 |
|
514 |
1%|โ | 500/34750 [26:31<17:50:56, 1.88s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
0%| | 0/57 [00:00<?, ?it/s][A
|
|
|
516 |
4%|โ | 2/57 [00:00<00:19, 2.82it/s][A
|
|
|
517 |
5%|โ | 3/57 [00:01<00:25, 2.12it/s][A
|
|
|
518 |
7%|โ | 4/57 [00:02<00:28, 1.83it/s][A
|
|
|
519 |
9%|โ | 5/57 [00:02<00:28, 1.85it/s][A
|
|
|
520 |
11%|โ | 6/57 [00:03<00:28, 1.78it/s][A
|
|
|
521 |
12%|โโ | 7/57 [00:03<00:28, 1.76it/s][A
|
|
|
522 |
14%|โโ | 8/57 [00:04<00:28, 1.72it/s][A
|
|
|
523 |
16%|โโ | 9/57 [00:04<00:27, 1.72it/s][A
|
|
|
524 |
18%|โโ | 10/57 [00:05<00:26, 1.75it/s][A
|
|
|
525 |
19%|โโ | 11/57 [00:06<00:27, 1.68it/s][A
|
|
|
526 |
21%|โโ | 12/57 [00:06<00:29, 1.53it/s][A
|
|
|
527 |
23%|โโโ | 13/57 [00:07<00:31, 1.42it/s][A
|
|
|
528 |
25%|โโโ | 14/57 [00:08<00:29, 1.44it/s][A
|
|
|
529 |
26%|โโโ | 15/57 [00:09<00:31, 1.34it/s][A
|
|
|
530 |
28%|โโโ | 16/57 [00:09<00:28, 1.43it/s][A
|
|
|
531 |
30%|โโโ | 17/57 [00:10<00:26, 1.50it/s][A
|
|
|
532 |
32%|โโโโ | 18/57 [00:11<00:24, 1.58it/s][A
|
|
|
533 |
33%|โโโโ | 19/57 [00:11<00:23, 1.65it/s][A
|
|
|
534 |
35%|โโโโ | 20/57 [00:12<00:22, 1.64it/s][A
|
|
|
535 |
37%|โโโโ | 21/57 [00:12<00:21, 1.65it/s][A
|
|
|
536 |
39%|โโโโ | 22/57 [00:13<00:23, 1.52it/s][A
|
|
|
537 |
40%|โโโโ | 23/57 [00:14<00:24, 1.40it/s][A
|
|
|
538 |
42%|โโโโโ | 24/57 [00:15<00:23, 1.42it/s][A
|
|
|
539 |
44%|โโโโโ | 25/57 [00:15<00:21, 1.47it/s][A
|
|
|
540 |
46%|โโโโโ | 26/57 [00:16<00:19, 1.55it/s][A
|
|
|
541 |
47%|โโโโโ | 27/57 [00:16<00:18, 1.65it/s][A
|
|
|
542 |
49%|โโโโโ | 28/57 [00:17<00:18, 1.59it/s][A
|
|
|
543 |
51%|โโโโโ | 29/57 [00:18<00:17, 1.57it/s][A
|
|
|
544 |
53%|โโโโโโ | 30/57 [00:18<00:15, 1.70it/s][A
|
|
|
545 |
54%|โโโโโโ | 31/57 [00:19<00:14, 1.83it/s][A
|
|
|
546 |
56%|โโโโโโ | 32/57 [00:19<00:14, 1.78it/s][A
|
|
|
547 |
58%|โโโโโโ | 33/57 [00:20<00:14, 1.66it/s][A
|
|
|
548 |
60%|โโโโโโ | 34/57 [00:20<00:14, 1.63it/s][A
|
|
|
549 |
61%|โโโโโโโ | 35/57 [00:21<00:14, 1.56it/s][A
|
|
|
550 |
63%|โโโโโโโ | 36/57 [00:22<00:13, 1.57it/s][A
|
|
|
551 |
65%|โโโโโโโ | 37/57 [00:22<00:13, 1.53it/s][A
|
|
|
552 |
67%|โโโโโโโ | 38/57 [00:23<00:12, 1.47it/s][A
|
|
|
553 |
68%|โโโโโโโ | 39/57 [00:24<00:12, 1.46it/s][A
|
|
|
554 |
70%|โโโโโโโ | 40/57 [00:25<00:11, 1.43it/s][A
|
|
|
555 |
72%|โโโโโโโโ | 41/57 [00:25<00:11, 1.37it/s][A
|
|
|
556 |
74%|โโโโโโโโ | 42/57 [00:26<00:11, 1.35it/s][A
|
|
|
557 |
75%|โโโโโโโโ | 43/57 [00:27<00:10, 1.39it/s][A
|
|
|
558 |
77%|โโโโโโโโ | 44/57 [00:28<00:09, 1.36it/s][A
|
|
|
559 |
79%|โโโโโโโโ | 45/57 [00:28<00:07, 1.54it/s][A
|
|
|
560 |
81%|โโโโโโโโ | 46/57 [00:29<00:06, 1.58it/s][A
|
|
|
561 |
82%|โโโโโโโโโ | 47/57 [00:29<00:06, 1.55it/s][A
|
|
|
562 |
84%|โโโโโโโโโ | 48/57 [00:30<00:05, 1.63it/s][A
|
|
|
563 |
86%|โโโโโโโโโ | 49/57 [00:31<00:04, 1.67it/s][A
|
|
|
564 |
88%|โโโโโโโโโ | 50/57 [00:31<00:04, 1.67it/s][A
|
|
|
565 |
89%|โโโโโโโโโ | 51/57 [00:32<00:03, 1.66it/s][A
|
|
|
566 |
91%|โโโโโโโโโ | 52/57 [00:32<00:02, 1.69it/s][A
|
|
|
567 |
93%|โโโโโโโโโโ| 53/57 [00:33<00:02, 1.80it/s][A
|
|
|
568 |
95%|โโโโโโโโโโ| 54/57 [00:33<00:01, 1.77it/s][A
|
|
|
569 |
96%|โโโโโโโโโโ| 55/57 [00:34<00:01, 1.61it/s][A
|
|
|
570 |
98%|โโโโโโโโโโ| 56/57 [00:35<00:00, 1.56it/s][A
|
|
|
571 |
|
|
|
572 |
|
573 |
1%|โ | 500/34750 [27:12<17:50:56, 1.88s/it]
|
|
|
|
|
574 |
[ASaving model checkpoint to ./checkpoint-500
|
|
|
|
|
|
|
|
|
|
1 |
+
01/31/2022 07:15:59 - WARNING - __main__ - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: True
|
2 |
+
01/31/2022 07:15:59 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
|
3 |
+
_n_gpu=1,
|
4 |
+
adafactor=False,
|
5 |
+
adam_beta1=0.9,
|
6 |
+
adam_beta2=0.999,
|
7 |
+
adam_epsilon=1e-08,
|
8 |
+
bf16=False,
|
9 |
+
bf16_full_eval=False,
|
10 |
+
dataloader_drop_last=False,
|
11 |
+
dataloader_num_workers=0,
|
12 |
+
dataloader_pin_memory=True,
|
13 |
+
ddp_bucket_cap_mb=None,
|
14 |
+
ddp_find_unused_parameters=None,
|
15 |
+
debug=[],
|
16 |
+
deepspeed=None,
|
17 |
+
disable_tqdm=False,
|
18 |
+
do_eval=True,
|
19 |
+
do_predict=False,
|
20 |
+
do_train=True,
|
21 |
+
eval_accumulation_steps=None,
|
22 |
+
eval_steps=500,
|
23 |
+
evaluation_strategy=IntervalStrategy.STEPS,
|
24 |
+
fp16=True,
|
25 |
+
fp16_backend=auto,
|
26 |
+
fp16_full_eval=False,
|
27 |
+
fp16_opt_level=O1,
|
28 |
+
gradient_accumulation_steps=4,
|
29 |
+
gradient_checkpointing=True,
|
30 |
+
greater_is_better=None,
|
31 |
+
group_by_length=True,
|
32 |
+
half_precision_backend=auto,
|
33 |
+
hub_model_id=None,
|
34 |
+
hub_strategy=HubStrategy.EVERY_SAVE,
|
35 |
+
hub_token=<HUB_TOKEN>,
|
36 |
+
ignore_data_skip=False,
|
37 |
+
label_names=None,
|
38 |
+
label_smoothing_factor=0.0,
|
39 |
+
learning_rate=7.5e-05,
|
40 |
+
length_column_name=input_length,
|
41 |
+
load_best_model_at_end=False,
|
42 |
+
local_rank=-1,
|
43 |
+
log_level=-1,
|
44 |
+
log_level_replica=-1,
|
45 |
+
log_on_each_node=True,
|
46 |
+
logging_dir=./runs/Jan31_07-15-59_job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6,
|
47 |
+
logging_first_step=False,
|
48 |
+
logging_nan_inf_filter=True,
|
49 |
+
logging_steps=100,
|
50 |
+
logging_strategy=IntervalStrategy.STEPS,
|
51 |
+
lr_scheduler_type=SchedulerType.LINEAR,
|
52 |
+
max_grad_norm=1.0,
|
53 |
+
max_steps=-1,
|
54 |
+
metric_for_best_model=None,
|
55 |
+
mp_parameters=,
|
56 |
+
no_cuda=False,
|
57 |
+
num_train_epochs=50.0,
|
58 |
+
optim=OptimizerNames.ADAMW_HF,
|
59 |
+
output_dir=./,
|
60 |
+
overwrite_output_dir=True,
|
61 |
+
past_index=-1,
|
62 |
+
per_device_eval_batch_size=8,
|
63 |
+
per_device_train_batch_size=8,
|
64 |
+
prediction_loss_only=False,
|
65 |
+
push_to_hub=True,
|
66 |
+
push_to_hub_model_id=None,
|
67 |
+
push_to_hub_organization=None,
|
68 |
+
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
|
69 |
+
remove_unused_columns=True,
|
70 |
+
report_to=['tensorboard'],
|
71 |
+
resume_from_checkpoint=None,
|
72 |
+
run_name=./,
|
73 |
+
save_on_each_node=False,
|
74 |
+
save_steps=500,
|
75 |
+
save_strategy=IntervalStrategy.STEPS,
|
76 |
+
save_total_limit=3,
|
77 |
+
seed=42,
|
78 |
+
sharded_ddp=[],
|
79 |
+
skip_memory_metrics=True,
|
80 |
+
tf32=None,
|
81 |
+
tpu_metrics_debug=False,
|
82 |
+
tpu_num_cores=None,
|
83 |
+
use_legacy_prediction_loop=False,
|
84 |
+
warmup_ratio=0.0,
|
85 |
+
warmup_steps=2000,
|
86 |
+
weight_decay=0.0,
|
87 |
+
xpu_backend=None,
|
88 |
+
)
|
89 |
+
01/31/2022 07:16:01 - WARNING - datasets.builder - Reusing dataset zeroth_korean_asr (/workspace/.cache/huggingface/datasets/kresnik___zeroth_korean_asr/clean/1.0.1/f6cf96a53d5512525e3113bab8048d36ce268658d6e0c40d45f65dfa3f0bc343)
|
90 |
+
01/31/2022 07:16:03 - WARNING - datasets.builder - Reusing dataset zeroth_korean_asr (/workspace/.cache/huggingface/datasets/kresnik___zeroth_korean_asr/clean/1.0.1/f6cf96a53d5512525e3113bab8048d36ce268658d6e0c40d45f65dfa3f0bc343)
|
91 |
+
|
92 |
+
|
93 |
+
loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6
|
94 |
+
Model config Wav2Vec2Config {
|
95 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
96 |
+
"activation_dropout": 0.0,
|
97 |
+
"adapter_kernel_size": 3,
|
98 |
+
"adapter_stride": 2,
|
99 |
+
"add_adapter": false,
|
100 |
+
"apply_spec_augment": true,
|
101 |
+
"architectures": [
|
102 |
+
"Wav2Vec2ForPreTraining"
|
103 |
+
],
|
104 |
+
"attention_dropout": 0.1,
|
105 |
+
"bos_token_id": 1,
|
106 |
+
"classifier_proj_size": 256,
|
107 |
+
"codevector_dim": 768,
|
108 |
+
"contrastive_logits_temperature": 0.1,
|
109 |
+
"conv_bias": true,
|
110 |
+
"conv_dim": [
|
111 |
+
512,
|
112 |
+
512,
|
113 |
+
512,
|
114 |
+
512,
|
115 |
+
512,
|
116 |
+
512,
|
117 |
+
512
|
118 |
+
],
|
119 |
+
"conv_kernel": [
|
120 |
+
10,
|
121 |
+
3,
|
122 |
+
3,
|
123 |
+
3,
|
124 |
+
3,
|
125 |
+
2,
|
126 |
+
2
|
127 |
+
],
|
128 |
+
"conv_stride": [
|
129 |
+
5,
|
130 |
+
2,
|
131 |
+
2,
|
132 |
+
2,
|
133 |
+
2,
|
134 |
+
2,
|
135 |
+
2
|
136 |
+
],
|
137 |
+
"ctc_loss_reduction": "sum",
|
138 |
+
"ctc_zero_infinity": false,
|
139 |
+
"diversity_loss_weight": 0.1,
|
140 |
+
"do_stable_layer_norm": true,
|
141 |
+
"eos_token_id": 2,
|
142 |
+
"feat_extract_activation": "gelu",
|
143 |
+
"feat_extract_dropout": 0.0,
|
144 |
+
"feat_extract_norm": "layer",
|
145 |
+
"feat_proj_dropout": 0.1,
|
146 |
+
"feat_quantizer_dropout": 0.0,
|
147 |
+
"final_dropout": 0.0,
|
148 |
+
"gradient_checkpointing": false,
|
149 |
+
"hidden_act": "gelu",
|
150 |
+
"hidden_dropout": 0.1,
|
151 |
+
"hidden_size": 1024,
|
152 |
+
"initializer_range": 0.02,
|
153 |
+
"intermediate_size": 4096,
|
154 |
+
"layer_norm_eps": 1e-05,
|
155 |
+
"layerdrop": 0.1,
|
156 |
+
"mask_feature_length": 10,
|
157 |
+
"mask_feature_min_masks": 0,
|
158 |
+
"mask_feature_prob": 0.0,
|
159 |
+
"mask_time_length": 10,
|
160 |
+
"mask_time_min_masks": 2,
|
161 |
+
"mask_time_prob": 0.075,
|
162 |
+
"model_type": "wav2vec2",
|
163 |
+
"num_adapter_layers": 3,
|
164 |
+
"num_attention_heads": 16,
|
165 |
+
"num_codevector_groups": 2,
|
166 |
+
"num_codevectors_per_group": 320,
|
167 |
+
"num_conv_pos_embedding_groups": 16,
|
168 |
+
"num_conv_pos_embeddings": 128,
|
169 |
+
"num_feat_extract_layers": 7,
|
170 |
+
"num_hidden_layers": 24,
|
171 |
+
"num_negatives": 100,
|
172 |
+
"output_hidden_size": 1024,
|
173 |
+
"pad_token_id": 0,
|
174 |
+
"proj_codevector_dim": 768,
|
175 |
+
"tdnn_dilation": [
|
176 |
+
1,
|
177 |
+
2,
|
178 |
+
3,
|
179 |
+
1,
|
180 |
+
1
|
181 |
+
],
|
182 |
+
"tdnn_dim": [
|
183 |
+
512,
|
184 |
+
512,
|
185 |
+
512,
|
186 |
+
512,
|
187 |
+
1500
|
188 |
+
],
|
189 |
+
"tdnn_kernel": [
|
190 |
+
5,
|
191 |
+
3,
|
192 |
+
3,
|
193 |
+
1,
|
194 |
+
1
|
195 |
+
],
|
196 |
+
"torch_dtype": "float32",
|
197 |
+
"transformers_version": "4.17.0.dev0",
|
198 |
+
"use_weighted_layer_sum": false,
|
199 |
+
"vocab_size": 32,
|
200 |
+
"xvector_output_dim": 512
|
201 |
+
}
|
202 |
+
|
203 |
+
|
204 |
0%| | 0/1 [00:00<?, ?ba/s]
|
205 |
+
|
206 |
0%| | 0/1 [00:00<?, ?ba/s]
|
207 |
+
Didn't find file ./tokenizer_config.json. We won't load it.
|
208 |
+
Didn't find file ./added_tokens.json. We won't load it.
|
209 |
+
Didn't find file ./special_tokens_map.json. We won't load it.
|
210 |
+
Didn't find file ./tokenizer.json. We won't load it.
|
211 |
+
loading file ./vocab.json
|
212 |
+
loading file None
|
213 |
+
loading file None
|
214 |
+
loading file None
|
215 |
+
loading file None
|
216 |
+
file ./config.json not found
|
217 |
+
Adding <s> to the vocabulary
|
218 |
+
Adding </s> to the vocabulary
|
219 |
+
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
220 |
+
loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6
|
221 |
+
Model config Wav2Vec2Config {
|
222 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
223 |
+
"activation_dropout": 0.0,
|
224 |
+
"adapter_kernel_size": 3,
|
225 |
+
"adapter_stride": 2,
|
226 |
+
"add_adapter": false,
|
227 |
+
"apply_spec_augment": true,
|
228 |
+
"architectures": [
|
229 |
+
"Wav2Vec2ForPreTraining"
|
230 |
+
],
|
231 |
+
"attention_dropout": 0.1,
|
232 |
+
"bos_token_id": 1,
|
233 |
+
"classifier_proj_size": 256,
|
234 |
+
"codevector_dim": 768,
|
235 |
+
"contrastive_logits_temperature": 0.1,
|
236 |
+
"conv_bias": true,
|
237 |
+
"conv_dim": [
|
238 |
+
512,
|
239 |
+
512,
|
240 |
+
512,
|
241 |
+
512,
|
242 |
+
512,
|
243 |
+
512,
|
244 |
+
512
|
245 |
+
],
|
246 |
+
"conv_kernel": [
|
247 |
+
10,
|
248 |
+
3,
|
249 |
+
3,
|
250 |
+
3,
|
251 |
+
3,
|
252 |
+
2,
|
253 |
+
2
|
254 |
+
],
|
255 |
+
"conv_stride": [
|
256 |
+
5,
|
257 |
+
2,
|
258 |
+
2,
|
259 |
+
2,
|
260 |
+
2,
|
261 |
+
2,
|
262 |
+
2
|
263 |
+
],
|
264 |
+
"ctc_loss_reduction": "sum",
|
265 |
+
"ctc_zero_infinity": false,
|
266 |
+
"diversity_loss_weight": 0.1,
|
267 |
+
"do_stable_layer_norm": true,
|
268 |
+
"eos_token_id": 2,
|
269 |
+
"feat_extract_activation": "gelu",
|
270 |
+
"feat_extract_dropout": 0.0,
|
271 |
+
"feat_extract_norm": "layer",
|
272 |
+
"feat_proj_dropout": 0.1,
|
273 |
+
"feat_quantizer_dropout": 0.0,
|
274 |
+
"final_dropout": 0.0,
|
275 |
+
"gradient_checkpointing": false,
|
276 |
+
"hidden_act": "gelu",
|
277 |
+
"hidden_dropout": 0.1,
|
278 |
+
"hidden_size": 1024,
|
279 |
+
"initializer_range": 0.02,
|
280 |
+
"intermediate_size": 4096,
|
281 |
+
"layer_norm_eps": 1e-05,
|
282 |
+
"layerdrop": 0.1,
|
283 |
+
"mask_feature_length": 10,
|
284 |
+
"mask_feature_min_masks": 0,
|
285 |
+
"mask_feature_prob": 0.0,
|
286 |
+
"mask_time_length": 10,
|
287 |
+
"mask_time_min_masks": 2,
|
288 |
+
"mask_time_prob": 0.075,
|
289 |
+
"model_type": "wav2vec2",
|
290 |
+
"num_adapter_layers": 3,
|
291 |
+
"num_attention_heads": 16,
|
292 |
+
"num_codevector_groups": 2,
|
293 |
+
"num_codevectors_per_group": 320,
|
294 |
+
"num_conv_pos_embedding_groups": 16,
|
295 |
+
"num_conv_pos_embeddings": 128,
|
296 |
+
"num_feat_extract_layers": 7,
|
297 |
+
"num_hidden_layers": 24,
|
298 |
+
"num_negatives": 100,
|
299 |
+
"output_hidden_size": 1024,
|
300 |
+
"pad_token_id": 0,
|
301 |
+
"proj_codevector_dim": 768,
|
302 |
+
"tdnn_dilation": [
|
303 |
+
1,
|
304 |
+
2,
|
305 |
+
3,
|
306 |
+
1,
|
307 |
+
1
|
308 |
+
],
|
309 |
+
"tdnn_dim": [
|
310 |
+
512,
|
311 |
+
512,
|
312 |
+
512,
|
313 |
+
512,
|
314 |
+
1500
|
315 |
+
],
|
316 |
+
"tdnn_kernel": [
|
317 |
+
5,
|
318 |
+
3,
|
319 |
+
3,
|
320 |
+
1,
|
321 |
+
1
|
322 |
+
],
|
323 |
+
"torch_dtype": "float32",
|
324 |
+
"transformers_version": "4.17.0.dev0",
|
325 |
+
"use_weighted_layer_sum": false,
|
326 |
+
"vocab_size": 32,
|
327 |
+
"xvector_output_dim": 512
|
328 |
+
}
|
329 |
+
|
330 |
+
loading feature extractor configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/preprocessor_config.json from cache at /workspace/.cache/huggingface/transformers/6fb028b95b394059e7d3b367bbca2382b576c66aebe896f04d2cd34e1b575f5b.d4484dc1c81456a2461485e7168b04347a7b9a4e3b1ef3aba723323b33e12326
|
331 |
+
Feature extractor Wav2Vec2FeatureExtractor {
|
332 |
+
"do_normalize": true,
|
333 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
334 |
+
"feature_size": 1,
|
335 |
+
"padding_side": "right",
|
336 |
+
"padding_value": 0,
|
337 |
+
"return_attention_mask": true,
|
338 |
+
"sampling_rate": 16000
|
339 |
+
}
|
340 |
+
|
341 |
+
loading weights file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/pytorch_model.bin from cache at /workspace/.cache/huggingface/transformers/1e6a6507f3b689035cd4b247e2a37c154e27f39143f31357a49b4e38baeccc36.1edb32803799e27ed554eb7dd935f6745b1a0b17b0ea256442fe24db6eb546cd
|
342 |
+
Some weights of the model checkpoint at facebook/wav2vec2-xls-r-300m were not used when initializing Wav2Vec2ForCTC: ['quantizer.weight_proj.bias', 'project_q.bias', 'quantizer.weight_proj.weight', 'project_hid.bias', 'project_q.weight', 'quantizer.codevectors', 'project_hid.weight']
|
343 |
+
- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
|
344 |
+
- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
|
345 |
+
Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-xls-r-300m and are newly initialized: ['lm_head.bias', 'lm_head.weight']
|
346 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
347 |
+
|
348 |
+
|
349 |
+
|
350 |
0%| | 0/23 [00:00<?, ?ba/s]
|
351 |
+
|
352 |
0%| | 0/1 [00:00<?, ?ba/s]
|
353 |
+
Configuration saved in ./preprocessor_config.json
|
354 |
+
tokenizer config file saved in ./tokenizer_config.json
|
355 |
+
Special tokens file saved in ./special_tokens_map.json
|
356 |
+
added tokens file saved in ./added_tokens.json
|
357 |
+
Configuration saved in ./config.json
|
358 |
+
loading feature extractor configuration file ./preprocessor_config.json
|
359 |
+
loading configuration file ./config.json
|
360 |
+
Model config Wav2Vec2Config {
|
361 |
+
"_name_or_path": "./",
|
362 |
+
"activation_dropout": 0.1,
|
363 |
+
"adapter_kernel_size": 3,
|
364 |
+
"adapter_stride": 2,
|
365 |
+
"add_adapter": false,
|
366 |
+
"apply_spec_augment": true,
|
367 |
+
"architectures": [
|
368 |
+
"Wav2Vec2ForPreTraining"
|
369 |
+
],
|
370 |
+
"attention_dropout": 0.0,
|
371 |
+
"bos_token_id": 1,
|
372 |
+
"classifier_proj_size": 256,
|
373 |
+
"codevector_dim": 768,
|
374 |
+
"contrastive_logits_temperature": 0.1,
|
375 |
+
"conv_bias": true,
|
376 |
+
"conv_dim": [
|
377 |
+
512,
|
378 |
+
512,
|
379 |
+
512,
|
380 |
+
512,
|
381 |
+
512,
|
382 |
+
512,
|
383 |
+
512
|
384 |
+
],
|
385 |
+
"conv_kernel": [
|
386 |
+
10,
|
387 |
+
3,
|
388 |
+
3,
|
389 |
+
3,
|
390 |
+
3,
|
391 |
+
2,
|
392 |
+
2
|
393 |
+
],
|
394 |
+
"conv_stride": [
|
395 |
+
5,
|
396 |
+
2,
|
397 |
+
2,
|
398 |
+
2,
|
399 |
+
2,
|
400 |
+
2,
|
401 |
+
2
|
402 |
+
],
|
403 |
+
"ctc_loss_reduction": "mean",
|
404 |
+
"ctc_zero_infinity": false,
|
405 |
+
"diversity_loss_weight": 0.1,
|
406 |
+
"do_stable_layer_norm": true,
|
407 |
+
"eos_token_id": 2,
|
408 |
+
"feat_extract_activation": "gelu",
|
409 |
+
"feat_extract_dropout": 0.0,
|
410 |
+
"feat_extract_norm": "layer",
|
411 |
+
"feat_proj_dropout": 0.0,
|
412 |
+
"feat_quantizer_dropout": 0.0,
|
413 |
+
"final_dropout": 0.0,
|
414 |
+
"hidden_act": "gelu",
|
415 |
+
"hidden_dropout": 0.0,
|
416 |
+
"hidden_size": 1024,
|
417 |
+
"initializer_range": 0.02,
|
418 |
+
"intermediate_size": 4096,
|
419 |
+
"layer_norm_eps": 1e-05,
|
420 |
+
"layerdrop": 0.0,
|
421 |
+
"mask_feature_length": 64,
|
422 |
+
"mask_feature_min_masks": 0,
|
423 |
+
"mask_feature_prob": 0.25,
|
424 |
+
"mask_time_length": 10,
|
425 |
+
"mask_time_min_masks": 2,
|
426 |
+
"mask_time_prob": 0.75,
|
427 |
+
"model_type": "wav2vec2",
|
428 |
+
"num_adapter_layers": 3,
|
429 |
+
"num_attention_heads": 16,
|
430 |
+
"num_codevector_groups": 2,
|
431 |
+
"num_codevectors_per_group": 320,
|
432 |
+
"num_conv_pos_embedding_groups": 16,
|
433 |
+
"num_conv_pos_embeddings": 128,
|
434 |
+
"num_feat_extract_layers": 7,
|
435 |
+
"num_hidden_layers": 24,
|
436 |
+
"num_negatives": 100,
|
437 |
+
"output_hidden_size": 1024,
|
438 |
+
"pad_token_id": 1204,
|
439 |
+
"proj_codevector_dim": 768,
|
440 |
+
"tdnn_dilation": [
|
441 |
+
1,
|
442 |
+
2,
|
443 |
+
3,
|
444 |
+
1,
|
445 |
+
1
|
446 |
+
],
|
447 |
+
"tdnn_dim": [
|
448 |
+
512,
|
449 |
+
512,
|
450 |
+
512,
|
451 |
+
512,
|
452 |
+
1500
|
453 |
+
],
|
454 |
+
"tdnn_kernel": [
|
455 |
+
5,
|
456 |
+
3,
|
457 |
+
3,
|
458 |
+
1,
|
459 |
+
1
|
460 |
+
],
|
461 |
+
"torch_dtype": "float32",
|
462 |
+
"transformers_version": "4.17.0.dev0",
|
463 |
+
"use_weighted_layer_sum": false,
|
464 |
+
"vocab_size": 1207,
|
465 |
+
"xvector_output_dim": 512
|
466 |
+
}
|
467 |
+
|
468 |
+
loading feature extractor configuration file ./preprocessor_config.json
|
469 |
+
Feature extractor Wav2Vec2FeatureExtractor {
|
470 |
+
"do_normalize": true,
|
471 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
472 |
+
"feature_size": 1,
|
473 |
+
"padding_side": "right",
|
474 |
+
"padding_value": 0,
|
475 |
+
"return_attention_mask": true,
|
476 |
+
"sampling_rate": 16000
|
477 |
+
}
|
478 |
+
|
479 |
+
Didn't find file ./tokenizer.json. We won't load it.
|
480 |
+
loading file ./vocab.json
|
481 |
+
loading file ./tokenizer_config.json
|
482 |
+
loading file ./added_tokens.json
|
483 |
+
loading file ./special_tokens_map.json
|
484 |
+
loading file None
|
485 |
+
Adding <s> to the vocabulary
|
486 |
+
Adding </s> to the vocabulary
|
487 |
+
/workspace/wav2vec2-xls-r-300m-korean/./ is already a clone of https://huggingface.co/w11wo/wav2vec2-xls-r-300m-korean. Make sure you pull the latest changes with `repo.git_pull()`.
|
488 |
+
01/31/2022 07:18:18 - WARNING - huggingface_hub.repository - /workspace/wav2vec2-xls-r-300m-korean/./ is already a clone of https://huggingface.co/w11wo/wav2vec2-xls-r-300m-korean. Make sure you pull the latest changes with `repo.git_pull()`.
|
489 |
+
Using amp half precision backend
|
490 |
+
The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
|
491 |
+
/opt/conda/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use thePyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning
|
492 |
+
warnings.warn(
|
493 |
+
***** Running training *****
|
494 |
+
Num examples = 22262
|
495 |
+
Num Epochs = 50
|
496 |
+
Instantaneous batch size per device = 8
|
497 |
+
Total train batch size (w. parallel, distributed & accumulation) = 32
|
498 |
+
Gradient Accumulation steps = 4
|
499 |
+
Total optimization steps = 34750
|
500 |
+
|
501 |
0%| | 0/34750 [00:00<?, ?it/s]
|
502 |
0%| | 1/34750 [00:06<64:28:32, 6.68s/it]
|
503 |
0%| | 2/34750 [00:12<57:43:53, 5.98s/it]
|
504 |
0%| | 3/34750 [00:17<54:31:03, 5.65s/it]
|
505 |
0%| | 4/34750 [00:22<50:51:50, 5.27s/it]
|
506 |
0%| | 5/34750 [00:26<48:33:10, 5.03s/it]
|
507 |
0%| | 6/34750 [00:31<46:50:38, 4.85s/it]
|
508 |
0%| | 7/34750 [00:35<45:36:23, 4.73s/it]
|
509 |
0%| | 8/34750 [00:40<44:29:00, 4.61s/it]
|
510 |
0%| | 9/34750 [00:44<43:10:17, 4.47s/it]
|
511 |
0%| | 10/34750 [00:48<42:06:37, 4.36s/it]
|
512 |
0%| | 11/34750 [00:52<40:57:19, 4.24s/it]
|
513 |
0%| | 12/34750 [00:56<39:38:33, 4.11s/it]
|
514 |
0%| | 13/34750 [00:59<38:31:48, 3.99s/it]
|
515 |
0%| | 14/34750 [01:03<37:54:45, 3.93s/it]
|
516 |
0%| | 15/34750 [01:07<36:35:46, 3.79s/it]
|
517 |
0%| | 16/34750 [01:10<35:45:25, 3.71s/it]
|
518 |
0%| | 17/34750 [01:13<34:45:16, 3.60s/it]
|
519 |
0%| | 18/34750 [01:17<33:59:39, 3.52s/it]
|
520 |
0%| | 19/34750 [01:20<33:05:56, 3.43s/it]
|
521 |
0%| | 20/34750 [01:23<32:33:40, 3.38s/it]
|
522 |
0%| | 21/34750 [01:26<32:01:32, 3.32s/it]
|
523 |
0%| | 22/34750 [01:30<31:21:02, 3.25s/it]
|
524 |
0%| | 23/34750 [01:33<30:52:11, 3.20s/it]
|
525 |
0%| | 24/34750 [01:36<30:24:22, 3.15s/it]
|
526 |
0%| | 25/34750 [01:39<29:53:04, 3.10s/it]
|
527 |
0%| | 26/34750 [01:42<29:25:40, 3.05s/it]
|
528 |
0%| | 27/34750 [01:44<28:34:56, 2.96s/it]
|
529 |
0%| | 28/34750 [01:47<28:11:40, 2.92s/it]
|
530 |
0%| | 29/34750 [01:50<27:54:42, 2.89s/it]
|
531 |
0%| | 30/34750 [01:53<27:27:22, 2.85s/it]
|
532 |
0%| | 31/34750 [01:55<27:01:28, 2.80s/it]
|
533 |
0%| | 32/34750 [01:58<26:40:58, 2.77s/it]
|
534 |
0%| | 33/34750 [02:01<26:24:14, 2.74s/it]
|
535 |
0%| | 34/34750 [02:03<25:52:04, 2.68s/it]
|
536 |
0%| | 35/34750 [02:06<25:43:25, 2.67s/it]
|
537 |
0%| | 36/34750 [02:08<25:11:08, 2.61s/it]
|
538 |
0%| | 37/34750 [02:11<24:28:28, 2.54s/it]
|
539 |
0%| | 38/34750 [02:13<23:51:25, 2.47s/it]
|
540 |
0%| | 39/34750 [02:15<23:19:33, 2.42s/it]
|
541 |
0%| | 40/34750 [02:18<22:52:11, 2.37s/it]
|
542 |
0%| | 41/34750 [02:20<22:39:10, 2.35s/it]
|
543 |
0%| | 42/34750 [02:22<22:09:25, 2.30s/it]
|
544 |
0%| | 43/34750 [02:24<21:47:00, 2.26s/it]
|
545 |
0%| | 44/34750 [02:26<21:18:01, 2.21s/it]
|
546 |
0%| | 45/34750 [02:28<20:48:32, 2.16s/it]
|
547 |
0%| | 46/34750 [02:31<20:29:08, 2.13s/it]
|
548 |
0%| | 47/34750 [02:32<20:01:46, 2.08s/it]
|
549 |
0%| | 48/34750 [02:34<19:24:47, 2.01s/it]
|
550 |
0%| | 49/34750 [02:36<18:42:30, 1.94s/it]
|
551 |
0%| | 50/34750 [02:38<17:57:24, 1.86s/it]
|
552 |
0%| | 51/34750 [02:44<31:34:21, 3.28s/it]
|
553 |
0%| | 52/34750 [02:50<38:06:08, 3.95s/it]
|
554 |
0%| | 53/34750 [02:55<41:11:56, 4.27s/it]
|
555 |
0%| | 54/34750 [03:00<42:58:47, 4.46s/it]
|
556 |
0%| | 55/34750 [03:04<43:32:12, 4.52s/it]
|
557 |
0%| | 56/34750 [03:09<43:38:21, 4.53s/it]
|
558 |
0%| | 57/34750 [03:13<43:18:06, 4.49s/it]
|
559 |
0%| | 58/34750 [03:18<42:30:15, 4.41s/it]
|
560 |
0%| | 59/34750 [03:22<42:02:18, 4.36s/it]
|
561 |
0%| | 60/34750 [03:26<41:31:48, 4.31s/it]
|
562 |
0%| | 61/34750 [03:30<40:32:29, 4.21s/it]
|
563 |
0%| | 62/34750 [03:34<39:22:08, 4.09s/it]
|
564 |
0%| | 63/34750 [03:38<38:18:34, 3.98s/it]
|
565 |
0%| | 64/34750 [03:41<37:37:25, 3.90s/it]
|
566 |
0%| | 65/34750 [03:45<36:45:09, 3.81s/it]
|
567 |
0%| | 66/34750 [03:48<35:44:42, 3.71s/it]
|
568 |
0%| | 67/34750 [03:52<35:21:38, 3.67s/it]
|
569 |
0%| | 68/34750 [03:55<34:38:18, 3.60s/it]
|
570 |
0%| | 69/34750 [03:59<33:35:03, 3.49s/it]
|
571 |
0%| | 70/34750 [04:02<32:57:42, 3.42s/it]
|
572 |
0%| | 71/34750 [04:05<32:30:58, 3.38s/it]
|
573 |
0%| | 72/34750 [04:08<31:58:21, 3.32s/it]
|
574 |
0%| | 73/34750 [04:12<31:39:22, 3.29s/it]
|
575 |
0%| | 74/34750 [04:15<30:59:41, 3.22s/it]
|
576 |
0%| | 75/34750 [04:18<30:22:31, 3.15s/it]
|
577 |
0%| | 76/34750 [04:21<30:16:16, 3.14s/it]
|
578 |
0%| | 77/34750 [04:24<30:00:28, 3.12s/it]
|
579 |
0%| | 78/34750 [04:27<29:35:28, 3.07s/it]
|
580 |
0%| | 79/34750 [04:30<28:52:03, 3.00s/it]
|
581 |
0%| | 80/34750 [04:32<28:15:57, 2.94s/it]
|
582 |
0%| | 81/34750 [04:35<27:39:57, 2.87s/it]
|
583 |
0%| | 82/34750 [04:38<27:02:17, 2.81s/it]
|
584 |
0%| | 83/34750 [04:40<26:42:09, 2.77s/it]
|
585 |
0%| | 84/34750 [04:43<26:15:39, 2.73s/it]
|
586 |
0%| | 85/34750 [04:46<26:03:43, 2.71s/it]
|
587 |
0%| | 86/34750 [04:48<25:34:47, 2.66s/it]
|
588 |
0%| | 87/34750 [04:51<25:14:44, 2.62s/it]
|
589 |
0%| | 88/34750 [04:53<24:52:15, 2.58s/it]
|
590 |
0%| | 89/34750 [04:56<24:13:33, 2.52s/it]
|
591 |
0%| | 90/34750 [04:58<23:45:50, 2.47s/it]
|
592 |
0%| | 91/34750 [05:00<23:15:35, 2.42s/it]
|
593 |
0%| | 92/34750 [05:03<22:43:29, 2.36s/it]
|
594 |
0%| | 93/34750 [05:05<22:28:51, 2.34s/it]
|
595 |
0%| | 94/34750 [05:07<21:54:02, 2.28s/it]
|
596 |
0%| | 95/34750 [05:09<21:18:57, 2.21s/it]
|
597 |
0%| | 96/34750 [05:11<20:44:18, 2.15s/it]
|
598 |
0%| | 97/34750 [05:13<20:04:09, 2.08s/it]
|
599 |
0%| | 98/34750 [05:15<19:41:42, 2.05s/it]
|
600 |
0%| | 99/34750 [05:17<19:05:17, 1.98s/it]
|
601 |
0%| | 100/34750 [05:18<18:21:38, 1.91s/it]
|
602 |
|
603 |
0%| | 100/34750 [05:18<18:21:38, 1.91s/it]
|
604 |
0%| | 101/34750 [05:25<31:59:06, 3.32s/it]
|
605 |
0%| | 102/34750 [05:31<38:44:13, 4.02s/it]
|
606 |
0%| | 103/34750 [05:36<42:04:31, 4.37s/it]
|
607 |
0%| | 104/34750 [05:41<43:20:27, 4.50s/it]
|
608 |
0%| | 105/34750 [05:45<43:33:06, 4.53s/it]
|
609 |
0%| | 106/34750 [05:50<43:01:31, 4.47s/it]
|
610 |
0%| | 107/34750 [05:54<42:35:58, 4.43s/it]
|
611 |
0%| | 108/34750 [05:58<41:36:32, 4.32s/it]
|
612 |
0%| | 109/34750 [06:02<40:49:12, 4.24s/it]
|
613 |
0%| | 110/34750 [06:06<40:24:00, 4.20s/it]
|
614 |
0%| | 111/34750 [06:10<39:21:11, 4.09s/it]
|
615 |
0%| | 112/34750 [06:14<38:20:20, 3.98s/it]
|
616 |
0%| | 113/34750 [06:18<37:45:38, 3.92s/it]
|
617 |
0%| | 114/34750 [06:21<36:57:18, 3.84s/it]
|
618 |
0%| | 115/34750 [06:25<36:23:40, 3.78s/it]
|
619 |
0%| | 116/34750 [06:28<35:34:12, 3.70s/it]
|
620 |
0%| | 117/34750 [06:32<34:43:35, 3.61s/it]
|
621 |
0%| | 118/34750 [06:35<33:56:27, 3.53s/it]
|
622 |
0%| | 119/34750 [06:38<33:21:27, 3.47s/it]
|
623 |
0%| | 120/34750 [06:42<32:59:05, 3.43s/it]
|
624 |
0%| | 121/34750 [06:45<32:17:52, 3.36s/it]
|
625 |
0%| | 122/34750 [06:48<31:38:10, 3.29s/it]
|
626 |
0%| | 123/34750 [06:51<31:05:15, 3.23s/it]
|
627 |
0%| | 124/34750 [06:54<30:46:22, 3.20s/it]
|
628 |
0%| | 125/34750 [06:57<30:10:54, 3.14s/it]
|
629 |
0%| | 126/34750 [07:00<29:41:42, 3.09s/it]
|
630 |
0%| | 127/34750 [07:03<29:03:34, 3.02s/it]
|
631 |
0%| | 128/34750 [07:06<28:35:44, 2.97s/it]
|
632 |
0%| | 129/34750 [07:09<28:00:19, 2.91s/it]
|
633 |
0%| | 130/34750 [07:12<27:21:27, 2.84s/it]
|
634 |
0%| | 131/34750 [07:14<27:10:16, 2.83s/it]
|
635 |
0%| | 132/34750 [07:17<26:33:47, 2.76s/it]
|
636 |
0%| | 133/34750 [07:20<26:14:29, 2.73s/it]
|
637 |
0%| | 134/34750 [07:22<25:45:14, 2.68s/it]
|
638 |
0%| | 135/34750 [07:25<25:17:13, 2.63s/it]
|
639 |
0%| | 136/34750 [07:27<24:57:13, 2.60s/it]
|
640 |
0%| | 137/34750 [07:30<24:24:51, 2.54s/it]
|
641 |
0%| | 138/34750 [07:32<23:51:55, 2.48s/it]
|
642 |
0%| | 139/34750 [07:34<23:21:09, 2.43s/it]
|
643 |
0%| | 140/34750 [07:36<22:52:59, 2.38s/it]
|
644 |
0%| | 141/34750 [07:39<22:43:48, 2.36s/it]
|
645 |
0%| | 142/34750 [07:41<22:20:24, 2.32s/it]
|
646 |
0%| | 143/34750 [07:43<22:04:04, 2.30s/it]
|
647 |
0%| | 144/34750 [07:45<21:37:56, 2.25s/it]
|
648 |
0%| | 145/34750 [07:47<21:03:48, 2.19s/it]
|
649 |
0%| | 146/34750 [07:50<20:40:12, 2.15s/it]
|
650 |
0%| | 147/34750 [07:51<20:03:46, 2.09s/it]
|
651 |
0%| | 148/34750 [07:53<19:25:14, 2.02s/it]
|
652 |
0%| | 149/34750 [07:55<18:55:40, 1.97s/it]
|
653 |
0%| | 150/34750 [07:57<18:20:39, 1.91s/it]
|
654 |
0%| | 151/34750 [08:03<31:24:03, 3.27s/it]
|
655 |
0%| | 152/34750 [08:09<37:53:01, 3.94s/it]
|
656 |
0%| | 153/34750 [08:14<41:53:08, 4.36s/it]
|
657 |
0%| | 154/34750 [08:19<43:48:48, 4.56s/it]
|
658 |
0%| | 155/34750 [08:24<43:58:26, 4.58s/it]
|
659 |
0%| | 156/34750 [08:28<43:45:25, 4.55s/it]
|
660 |
0%| | 157/34750 [08:33<43:43:02, 4.55s/it]
|
661 |
0%| | 158/34750 [08:37<42:58:24, 4.47s/it]
|
662 |
0%| | 159/34750 [08:41<41:59:46, 4.37s/it]
|
663 |
0%| | 160/34750 [08:45<40:59:58, 4.27s/it]
|
664 |
0%| | 161/34750 [08:49<40:07:34, 4.18s/it]
|
665 |
0%| | 162/34750 [08:53<39:31:01, 4.11s/it]
|
666 |
0%| | 163/34750 [08:57<38:50:29, 4.04s/it]
|
667 |
0%| | 164/34750 [09:01<38:04:36, 3.96s/it]
|
668 |
0%| | 165/34750 [09:05<37:16:49, 3.88s/it]
|
669 |
0%| | 166/34750 [09:08<36:26:52, 3.79s/it]
|
670 |
0%| | 167/34750 [09:12<35:48:44, 3.73s/it]
|
671 |
0%| | 168/34750 [09:15<35:16:30, 3.67s/it]
|
672 |
0%| | 169/34750 [09:19<34:42:11, 3.61s/it]
|
673 |
0%| | 170/34750 [09:22<33:58:16, 3.54s/it]
|
674 |
0%| | 171/34750 [09:25<33:07:26, 3.45s/it]
|
675 |
0%| | 172/34750 [09:29<32:20:46, 3.37s/it]
|
676 |
0%| | 173/34750 [09:32<31:43:56, 3.30s/it]
|
677 |
1%| | 174/34750 [09:35<31:16:09, 3.26s/it]
|
678 |
1%| | 175/34750 [09:38<31:01:53, 3.23s/it]
|
679 |
1%| | 176/34750 [09:41<30:33:05, 3.18s/it]
|
680 |
1%| | 177/34750 [09:44<30:02:14, 3.13s/it]
|
681 |
1%| | 178/34750 [09:47<29:31:44, 3.07s/it]
|
682 |
1%| | 179/34750 [09:50<28:51:20, 3.00s/it]
|
683 |
1%| | 180/34750 [09:53<28:07:59, 2.93s/it]
|
684 |
1%| | 181/34750 [09:55<27:42:48, 2.89s/it]
|
685 |
1%| | 182/34750 [09:58<27:05:20, 2.82s/it]
|
686 |
1%| | 183/34750 [10:01<26:42:02, 2.78s/it]
|
687 |
1%| | 184/34750 [10:03<26:09:40, 2.72s/it]
|
688 |
1%| | 185/34750 [10:06<25:42:04, 2.68s/it]
|
689 |
1%| | 186/34750 [10:08<25:13:14, 2.63s/it]
|
690 |
1%| | 187/34750 [10:11<24:58:54, 2.60s/it]
|
691 |
1%| | 188/34750 [10:13<24:31:39, 2.55s/it]
|
692 |
1%| | 189/34750 [10:16<23:54:11, 2.49s/it]
|
693 |
1%| | 190/34750 [10:18<23:19:20, 2.43s/it]
|
694 |
1%| | 191/34750 [10:20<22:53:19, 2.38s/it]
|
695 |
1%| | 192/34750 [10:23<22:30:07, 2.34s/it]
|
696 |
1%| | 193/34750 [10:25<21:58:47, 2.29s/it]
|
697 |
1%| | 194/34750 [10:27<21:25:10, 2.23s/it]
|
698 |
1%| | 195/34750 [10:29<20:52:07, 2.17s/it]
|
699 |
1%| | 196/34750 [10:31<20:21:29, 2.12s/it]
|
700 |
1%| | 197/34750 [10:33<19:45:12, 2.06s/it]
|
701 |
1%| | 198/34750 [10:35<19:10:57, 2.00s/it]
|
702 |
1%| | 199/34750 [10:36<18:35:35, 1.94s/it]
|
703 |
1%| | 200/34750 [10:38<17:58:57, 1.87s/it]
|
704 |
|
705 |
1%| | 200/34750 [10:38<17:58:57, 1.87s/it]
|
706 |
1%| | 201/34750 [10:44<30:29:43, 3.18s/it]
|
707 |
1%| | 202/34750 [10:50<36:43:22, 3.83s/it]
|
708 |
1%| | 203/34750 [10:55<40:17:17, 4.20s/it]
|
709 |
1%| | 204/34750 [11:00<41:57:33, 4.37s/it]
|
710 |
1%| | 205/34750 [11:04<42:29:54, 4.43s/it]
|
711 |
1%| | 206/34750 [11:09<42:44:42, 4.45s/it]
|
712 |
1%| | 207/34750 [11:13<41:56:02, 4.37s/it]
|
713 |
1%| | 208/34750 [11:17<41:20:03, 4.31s/it]
|
714 |
1%| | 209/34750 [11:21<40:36:04, 4.23s/it]
|
715 |
1%| | 210/34750 [11:25<40:15:07, 4.20s/it]
|
716 |
1%| | 211/34750 [11:29<39:13:51, 4.09s/it]
|
717 |
1%| | 212/34750 [11:33<38:18:15, 3.99s/it]
|
718 |
1%| | 213/34750 [11:37<37:31:08, 3.91s/it]
|
719 |
1%| | 214/34750 [11:40<36:50:20, 3.84s/it]
|
720 |
1%| | 215/34750 [11:44<36:03:03, 3.76s/it]
|
721 |
1%| | 216/34750 [11:47<35:19:22, 3.68s/it]
|
722 |
1%| | 217/34750 [11:51<34:49:41, 3.63s/it]
|
723 |
1%| | 218/34750 [11:54<33:58:09, 3.54s/it]
|
724 |
1%| | 219/34750 [11:57<33:17:16, 3.47s/it]
|
725 |
1%| | 220/34750 [12:01<32:42:24, 3.41s/it]
|
726 |
1%| | 221/34750 [12:04<32:12:04, 3.36s/it]
|
727 |
1%| | 222/34750 [12:07<31:21:23, 3.27s/it]
|
728 |
1%| | 223/34750 [12:10<30:51:33, 3.22s/it]
|
729 |
1%| | 224/34750 [12:13<30:13:54, 3.15s/it]
|
730 |
1%| | 225/34750 [12:16<29:45:11, 3.10s/it]
|
731 |
1%| | 226/34750 [12:19<29:23:35, 3.06s/it]
|
732 |
1%| | 227/34750 [12:22<28:42:32, 2.99s/it]
|
733 |
1%| | 228/34750 [12:25<28:22:04, 2.96s/it]
|
734 |
1%| | 229/34750 [12:28<27:48:51, 2.90s/it]
|
735 |
1%| | 230/34750 [12:30<27:11:50, 2.84s/it]
|
736 |
1%| | 231/34750 [12:33<26:35:09, 2.77s/it]
|
737 |
1%| | 232/34750 [12:35<26:10:51, 2.73s/it]
|
738 |
1%| | 233/34750 [12:38<25:52:41, 2.70s/it]
|
739 |
1%| | 234/34750 [12:41<25:20:57, 2.64s/it]
|
740 |
1%| | 235/34750 [12:43<24:56:17, 2.60s/it]
|
741 |
1%| | 236/34750 [12:45<24:12:05, 2.52s/it]
|
742 |
1%| | 237/34750 [12:48<23:36:45, 2.46s/it]
|
743 |
1%| | 238/34750 [12:50<23:15:05, 2.43s/it]
|
744 |
1%| | 239/34750 [12:52<22:55:05, 2.39s/it]
|
745 |
1%| | 240/34750 [12:55<22:24:01, 2.34s/it]
|
746 |
1%| | 241/34750 [12:57<22:06:03, 2.31s/it]
|
747 |
1%| | 242/34750 [12:59<21:38:36, 2.26s/it]
|
748 |
1%| | 243/34750 [13:01<21:15:14, 2.22s/it]
|
749 |
1%| | 244/34750 [13:03<20:47:51, 2.17s/it]
|
750 |
1%| | 245/34750 [13:05<20:23:43, 2.13s/it]
|
751 |
1%| | 246/34750 [13:07<20:17:09, 2.12s/it]
|
752 |
1%| | 247/34750 [13:09<19:45:30, 2.06s/it]
|
753 |
1%| | 248/34750 [13:11<19:07:56, 2.00s/it]
|
754 |
1%| | 249/34750 [13:13<18:36:53, 1.94s/it]
|
755 |
1%| | 250/34750 [13:15<17:51:35, 1.86s/it]
|
756 |
1%| | 251/34750 [13:21<31:21:56, 3.27s/it]
|
757 |
1%| | 252/34750 [13:27<37:56:29, 3.96s/it]
|
758 |
1%| | 253/34750 [13:32<41:27:01, 4.33s/it]
|
759 |
1%| | 254/34750 [13:37<43:20:41, 4.52s/it]
|
760 |
1%| | 255/34750 [13:42<43:46:29, 4.57s/it]
|
761 |
1%| | 256/34750 [13:46<44:07:24, 4.60s/it]
|
762 |
1%| | 257/34750 [13:51<43:48:40, 4.57s/it]
|
763 |
1%| | 258/34750 [13:55<42:57:47, 4.48s/it]
|
764 |
1%| | 259/34750 [13:59<42:16:34, 4.41s/it]
|
765 |
1%| | 260/34750 [14:03<41:36:00, 4.34s/it]
|
766 |
1%| | 261/34750 [14:07<40:22:55, 4.22s/it]
|
767 |
1%| | 262/34750 [14:11<39:34:28, 4.13s/it]
|
768 |
1%| | 263/34750 [14:15<38:38:45, 4.03s/it]
|
769 |
1%| | 264/34750 [14:19<37:37:21, 3.93s/it]
|
770 |
1%| | 265/34750 [14:23<37:05:51, 3.87s/it]
|
771 |
1%| | 266/34750 [14:26<36:12:42, 3.78s/it]
|
772 |
1%| | 267/34750 [14:30<35:15:32, 3.68s/it]
|
773 |
1%| | 268/34750 [14:33<34:42:08, 3.62s/it]
|
774 |
1%| | 269/34750 [14:36<34:05:26, 3.56s/it]
|
775 |
1%| | 270/34750 [14:40<33:17:54, 3.48s/it]
|
776 |
1%| | 271/34750 [14:43<32:24:37, 3.38s/it]
|
777 |
1%| | 272/34750 [14:46<31:57:35, 3.34s/it]
|
778 |
1%| | 273/34750 [14:49<31:33:17, 3.29s/it]
|
779 |
1%| | 274/34750 [14:52<31:13:36, 3.26s/it]
|
780 |
1%| | 275/34750 [14:56<30:33:40, 3.19s/it]
|
781 |
1%| | 276/34750 [14:58<29:57:52, 3.13s/it]
|
782 |
1%| | 277/34750 [15:01<29:24:24, 3.07s/it]
|
783 |
1%| | 278/34750 [15:04<28:49:51, 3.01s/it]
|
784 |
1%| | 279/34750 [15:07<28:08:27, 2.94s/it]
|
785 |
1%| | 280/34750 [15:10<27:22:33, 2.86s/it]
|
786 |
1%| | 281/34750 [15:12<26:57:28, 2.82s/it]
|
787 |
1%| | 282/34750 [15:15<26:27:44, 2.76s/it]
|
788 |
1%| | 283/34750 [15:18<26:13:36, 2.74s/it]
|
789 |
1%| | 284/34750 [15:21<26:13:15, 2.74s/it]
|
790 |
1%| | 285/34750 [15:23<25:57:40, 2.71s/it]
|
791 |
1%| | 286/34750 [15:26<25:28:50, 2.66s/it]
|
792 |
1%| | 287/34750 [15:28<25:04:44, 2.62s/it]
|
793 |
1%| | 288/34750 [15:31<24:26:40, 2.55s/it]
|
794 |
1%| | 289/34750 [15:33<23:41:08, 2.47s/it]
|
795 |
1%| | 290/34750 [15:35<23:22:38, 2.44s/it]
|
796 |
1%| | 291/34750 [15:38<22:57:12, 2.40s/it]
|
797 |
1%| | 292/34750 [15:40<22:17:49, 2.33s/it]
|
798 |
1%| | 293/34750 [15:42<21:41:20, 2.27s/it]
|
799 |
1%| | 294/34750 [15:44<21:08:58, 2.21s/it]
|
800 |
1%| | 295/34750 [15:46<20:50:26, 2.18s/it]
|
801 |
1%| | 296/34750 [15:48<20:32:20, 2.15s/it]
|
802 |
1%| | 297/34750 [15:50<19:59:15, 2.09s/it]
|
803 |
1%| | 298/34750 [15:52<19:26:06, 2.03s/it]
|
804 |
1%| | 299/34750 [15:54<18:49:19, 1.97s/it]
|
805 |
1%| | 300/34750 [15:56<18:10:12, 1.90s/it]
|
806 |
|
807 |
1%| | 300/34750 [15:56<18:10:12, 1.90s/it]
|
808 |
1%| | 301/34750 [16:02<31:58:03, 3.34s/it]
|
809 |
1%| | 302/34750 [16:08<37:55:08, 3.96s/it]
|
810 |
1%| | 303/34750 [16:13<41:36:50, 4.35s/it]
|
811 |
1%| | 304/34750 [16:18<43:17:31, 4.52s/it]
|
812 |
1%| | 305/34750 [16:23<43:51:54, 4.58s/it]
|
813 |
1%| | 306/34750 [16:27<43:56:28, 4.59s/it]
|
814 |
1%| | 307/34750 [16:32<43:43:04, 4.57s/it]
|
815 |
1%| | 308/34750 [16:36<42:48:58, 4.48s/it]
|
816 |
1%| | 309/34750 [16:40<42:16:02, 4.42s/it]
|
817 |
1%| | 310/34750 [16:44<41:16:33, 4.31s/it]
|
818 |
1%| | 311/34750 [16:48<40:43:30, 4.26s/it]
|
819 |
1%| | 312/34750 [16:52<39:52:16, 4.17s/it]
|
820 |
1%| | 313/34750 [16:56<38:22:24, 4.01s/it]
|
821 |
1%| | 314/34750 [17:00<37:28:22, 3.92s/it]
|
822 |
1%| | 315/34750 [17:03<36:46:54, 3.85s/it]
|
823 |
1%| | 316/34750 [17:07<35:58:05, 3.76s/it]
|
824 |
1%| | 317/34750 [17:10<35:05:57, 3.67s/it]
|
825 |
1%| | 318/34750 [17:14<34:07:17, 3.57s/it]
|
826 |
1%| | 319/34750 [17:17<33:31:36, 3.51s/it]
|
827 |
1%| | 320/34750 [17:20<32:47:49, 3.43s/it]
|
828 |
1%| | 321/34750 [17:24<32:01:42, 3.35s/it]
|
829 |
1%| | 322/34750 [17:27<31:36:22, 3.30s/it]
|
830 |
1%| | 323/34750 [17:30<31:07:44, 3.26s/it]
|
831 |
1%| | 324/34750 [17:33<30:53:20, 3.23s/it]
|
832 |
1%| | 325/34750 [17:36<30:26:15, 3.18s/it]
|
833 |
1%| | 326/34750 [17:39<29:47:46, 3.12s/it]
|
834 |
1%| | 327/34750 [17:42<29:12:55, 3.06s/it]
|
835 |
1%| | 328/34750 [17:45<28:47:06, 3.01s/it]
|
836 |
1%| | 329/34750 [17:48<28:08:18, 2.94s/it]
|
837 |
1%| | 330/34750 [17:50<27:36:09, 2.89s/it]
|
838 |
1%| | 331/34750 [17:53<27:21:46, 2.86s/it]
|
839 |
1%| | 332/34750 [17:56<27:03:08, 2.83s/it]
|
840 |
1%| | 333/34750 [17:59<26:20:26, 2.76s/it]
|
841 |
1%| | 334/34750 [18:01<26:12:57, 2.74s/it]
|
842 |
1%| | 335/34750 [18:04<25:41:28, 2.69s/it]
|
843 |
1%| | 336/34750 [18:06<25:12:54, 2.64s/it]
|
844 |
1%| | 337/34750 [18:09<24:41:53, 2.58s/it]
|
845 |
1%| | 338/34750 [18:11<24:12:43, 2.53s/it]
|
846 |
1%| | 339/34750 [18:14<23:30:50, 2.46s/it]
|
847 |
1%| | 340/34750 [18:16<22:57:39, 2.40s/it]
|
848 |
1%| | 341/34750 [18:18<22:20:00, 2.34s/it]
|
849 |
1%| | 342/34750 [18:20<22:25:17, 2.35s/it]
|
850 |
1%| | 343/34750 [18:23<22:01:56, 2.31s/it]
|
851 |
1%| | 344/34750 [18:25<21:44:05, 2.27s/it]
|
852 |
1%| | 345/34750 [18:27<21:18:47, 2.23s/it]
|
853 |
1%| | 346/34750 [18:29<20:40:52, 2.16s/it]
|
854 |
1%| | 347/34750 [18:31<20:05:18, 2.10s/it]
|
855 |
1%| | 348/34750 [18:33<19:18:53, 2.02s/it]
|
856 |
1%| | 349/34750 [18:34<18:30:11, 1.94s/it]
|
857 |
1%| | 350/34750 [18:36<17:49:48, 1.87s/it]
|
858 |
1%| | 351/34750 [18:43<30:43:41, 3.22s/it]
|
859 |
1%| | 352/34750 [18:48<36:25:36, 3.81s/it]
|
860 |
1%| | 353/34750 [18:53<40:38:35, 4.25s/it]
|
861 |
1%| | 354/34750 [18:58<42:21:14, 4.43s/it]
|
862 |
1%| | 355/34750 [19:03<43:07:44, 4.51s/it]
|
863 |
1%| | 356/34750 [19:07<42:26:41, 4.44s/it]
|
864 |
1%| | 357/34750 [19:11<41:53:53, 4.39s/it]
|
865 |
1%| | 358/34750 [19:15<40:39:51, 4.26s/it]
|
866 |
1%| | 359/34750 [19:19<40:16:11, 4.22s/it]
|
867 |
1%| | 360/34750 [19:23<39:41:45, 4.16s/it]
|
868 |
1%| | 361/34750 [19:27<38:47:40, 4.06s/it]
|
869 |
1%| | 362/34750 [19:31<38:03:09, 3.98s/it]
|
870 |
1%| | 363/34750 [19:35<37:17:42, 3.90s/it]
|
871 |
1%| | 364/34750 [19:38<36:50:26, 3.86s/it]
|
872 |
1%| | 365/34750 [19:42<36:07:43, 3.78s/it]
|
873 |
1%| | 366/34750 [19:45<35:02:58, 3.67s/it]
|
874 |
1%| | 367/34750 [19:49<34:07:02, 3.57s/it]
|
875 |
1%| | 368/34750 [19:52<33:13:38, 3.48s/it]
|
876 |
1%| | 369/34750 [19:55<32:49:53, 3.44s/it]
|
877 |
1%| | 370/34750 [19:58<32:19:00, 3.38s/it]
|
878 |
1%| | 371/34750 [20:02<31:58:00, 3.35s/it]
|
879 |
1%| | 372/34750 [20:05<31:12:15, 3.27s/it]
|
880 |
1%| | 373/34750 [20:08<30:34:34, 3.20s/it]
|
881 |
1%| | 374/34750 [20:11<30:28:31, 3.19s/it]
|
882 |
1%| | 375/34750 [20:14<29:47:15, 3.12s/it]
|
883 |
1%| | 376/34750 [20:17<29:13:07, 3.06s/it]
|
884 |
1%| | 377/34750 [20:20<28:44:15, 3.01s/it]
|
885 |
1%| | 378/34750 [20:23<28:26:34, 2.98s/it]
|
886 |
1%| | 379/34750 [20:26<27:56:33, 2.93s/it]
|
887 |
1%| | 380/34750 [20:28<27:25:39, 2.87s/it]
|
888 |
1%| | 381/34750 [20:31<26:59:30, 2.83s/it]
|
889 |
1%| | 382/34750 [20:34<26:29:51, 2.78s/it]
|
890 |
1%| | 383/34750 [20:36<25:56:46, 2.72s/it]
|
891 |
1%| | 384/34750 [20:39<25:35:53, 2.68s/it]
|
892 |
1%| | 385/34750 [20:41<25:02:32, 2.62s/it]
|
893 |
1%| | 386/34750 [20:44<24:39:09, 2.58s/it]
|
894 |
1%| | 387/34750 [20:46<24:21:30, 2.55s/it]
|
895 |
1%| | 388/34750 [20:49<23:38:31, 2.48s/it]
|
896 |
1%| | 389/34750 [20:51<23:10:07, 2.43s/it]
|
897 |
1%| | 390/34750 [20:53<22:38:55, 2.37s/it]
|
898 |
1%| | 391/34750 [20:55<22:09:02, 2.32s/it]
|
899 |
1%| | 392/34750 [20:58<21:49:26, 2.29s/it]
|
900 |
1%| | 393/34750 [21:00<21:26:35, 2.25s/it]
|
901 |
1%| | 394/34750 [21:02<21:03:47, 2.21s/it]
|
902 |
1%| | 395/34750 [21:04<20:38:57, 2.16s/it]
|
903 |
1%| | 396/34750 [21:06<20:07:32, 2.11s/it]
|
904 |
1%| | 397/34750 [21:08<19:41:03, 2.06s/it]
|
905 |
1%| | 398/34750 [21:10<19:14:02, 2.02s/it]
|
906 |
1%| | 399/34750 [21:12<18:36:22, 1.95s/it]
|
907 |
1%| | 400/34750 [21:13<17:49:36, 1.87s/it]
|
908 |
|
909 |
1%| | 400/34750 [21:13<17:49:36, 1.87s/it]
|
910 |
1%| | 401/34750 [21:20<31:30:35, 3.30s/it]
|
911 |
1%| | 402/34750 [21:26<38:21:07, 4.02s/it]
|
912 |
1%| | 403/34750 [21:31<41:14:36, 4.32s/it]
|
913 |
1%| | 404/34750 [21:35<42:39:12, 4.47s/it]
|
914 |
1%| | 405/34750 [21:40<43:39:49, 4.58s/it]
|
915 |
1%| | 406/34750 [21:45<44:18:50, 4.65s/it]
|
916 |
1%| | 407/34750 [21:49<43:34:28, 4.57s/it]
|
917 |
1%| | 408/34750 [21:54<42:43:07, 4.48s/it]
|
918 |
1%| | 409/34750 [21:58<42:01:38, 4.41s/it]
|
919 |
1%| | 410/34750 [22:02<41:12:36, 4.32s/it]
|
920 |
1%| | 411/34750 [22:06<40:08:54, 4.21s/it]
|
921 |
1%| | 412/34750 [22:10<39:03:22, 4.09s/it]
|
922 |
1%| | 413/34750 [22:14<38:34:32, 4.04s/it]
|
923 |
1%| | 414/34750 [22:17<37:40:02, 3.95s/it]
|
924 |
1%| | 415/34750 [22:21<36:37:15, 3.84s/it]
|
925 |
1%| | 416/34750 [22:25<36:12:41, 3.80s/it]
|
926 |
1%| | 417/34750 [22:28<35:24:02, 3.71s/it]
|
927 |
1%| | 418/34750 [22:32<34:40:10, 3.64s/it]
|
928 |
1%| | 419/34750 [22:35<33:57:25, 3.56s/it]
|
929 |
1%| | 420/34750 [22:38<33:08:40, 3.48s/it]
|
930 |
1%| | 421/34750 [22:42<32:18:45, 3.39s/it]
|
931 |
1%| | 422/34750 [22:45<31:30:05, 3.30s/it]
|
932 |
1%| | 423/34750 [22:48<30:52:25, 3.24s/it]
|
933 |
1%| | 424/34750 [22:51<30:20:07, 3.18s/it]
|
934 |
1%| | 425/34750 [22:54<30:16:08, 3.17s/it]
|
935 |
1%| | 426/34750 [22:57<29:37:23, 3.11s/it]
|
936 |
1%| | 427/34750 [23:00<29:02:17, 3.05s/it]
|
937 |
1%| | 428/34750 [23:03<28:32:26, 2.99s/it]
|
938 |
1%| | 429/34750 [23:05<27:55:36, 2.93s/it]
|
939 |
1%| | 430/34750 [23:08<27:22:38, 2.87s/it]
|
940 |
1%| | 431/34750 [23:11<26:42:52, 2.80s/it]
|
941 |
1%| | 432/34750 [23:13<26:09:53, 2.74s/it]
|
942 |
1%| | 433/34750 [23:16<25:33:50, 2.68s/it]
|
943 |
1%| | 434/34750 [23:19<25:26:14, 2.67s/it]
|
944 |
1%|โ | 435/34750 [23:21<25:08:01, 2.64s/it]
|
945 |
1%|โ | 436/34750 [23:24<24:28:11, 2.57s/it]
|
946 |
1%|โ | 437/34750 [23:26<23:45:04, 2.49s/it]
|
947 |
1%|โ | 438/34750 [23:28<23:09:23, 2.43s/it]
|
948 |
1%|โ | 439/34750 [23:30<22:35:50, 2.37s/it]
|
949 |
1%|โ | 440/34750 [23:33<22:09:21, 2.32s/it]
|
950 |
1%|โ | 441/34750 [23:35<21:32:40, 2.26s/it]
|
951 |
1%|โ | 442/34750 [23:37<21:02:35, 2.21s/it]
|
952 |
1%|โ | 443/34750 [23:39<20:37:00, 2.16s/it]
|
953 |
1%|โ | 444/34750 [23:41<20:17:59, 2.13s/it]
|
954 |
1%|โ | 445/34750 [23:43<20:03:47, 2.11s/it]
|
955 |
1%|โ | 446/34750 [23:45<19:49:33, 2.08s/it]
|
956 |
1%|โ | 447/34750 [23:47<19:19:48, 2.03s/it]
|
957 |
1%|โ | 448/34750 [23:49<18:48:10, 1.97s/it]
|
958 |
1%|โ | 449/34750 [23:51<18:28:39, 1.94s/it]
|
959 |
1%|โ | 450/34750 [23:52<17:45:13, 1.86s/it]
|
960 |
1%|โ | 451/34750 [23:59<30:08:37, 3.16s/it]
|
961 |
1%|โ | 452/34750 [24:04<37:08:51, 3.90s/it]
|
962 |
1%|โ | 453/34750 [24:09<40:16:04, 4.23s/it]
|
963 |
1%|โ | 454/34750 [24:14<41:18:56, 4.34s/it]
|
964 |
1%|โ | 455/34750 [24:18<42:06:45, 4.42s/it]
|
965 |
1%|โ | 456/34750 [24:23<41:51:37, 4.39s/it]
|
966 |
1%|โ | 457/34750 [24:27<41:49:04, 4.39s/it]
|
967 |
1%|โ | 458/34750 [24:31<41:03:14, 4.31s/it]
|
968 |
1%|โ | 459/34750 [24:35<40:29:08, 4.25s/it]
|
969 |
1%|โ | 460/34750 [24:39<39:39:10, 4.16s/it]
|
970 |
1%|โ | 461/34750 [24:43<38:56:37, 4.09s/it]
|
971 |
1%|โ | 462/34750 [24:47<38:30:33, 4.04s/it]
|
972 |
1%|โ | 463/34750 [24:51<37:55:04, 3.98s/it]
|
973 |
1%|โ | 464/34750 [24:55<37:01:56, 3.89s/it]
|
974 |
1%|โ | 465/34750 [24:58<36:01:26, 3.78s/it]
|
975 |
1%|โ | 466/34750 [25:02<35:06:25, 3.69s/it]
|
976 |
1%|โ | 467/34750 [25:05<34:18:13, 3.60s/it]
|
977 |
1%|โ | 468/34750 [25:08<33:47:41, 3.55s/it]
|
978 |
1%|โ | 469/34750 [25:12<32:59:07, 3.46s/it]
|
979 |
1%|โ | 470/34750 [25:15<32:19:51, 3.40s/it]
|
980 |
1%|โ | 471/34750 [25:18<31:52:25, 3.35s/it]
|
981 |
1%|โ | 472/34750 [25:21<31:32:56, 3.31s/it]
|
982 |
1%|โ | 473/34750 [25:24<30:51:50, 3.24s/it]
|
983 |
1%|โ | 474/34750 [25:28<30:17:54, 3.18s/it]
|
984 |
1%|โ | 475/34750 [25:31<29:52:40, 3.14s/it]
|
985 |
1%|โ | 476/34750 [25:34<29:21:56, 3.08s/it]
|
986 |
1%|โ | 477/34750 [25:37<29:08:35, 3.06s/it]
|
987 |
1%|โ | 478/34750 [25:39<28:25:03, 2.99s/it]
|
988 |
1%|โ | 479/34750 [25:42<28:15:33, 2.97s/it]
|
989 |
1%|โ | 480/34750 [25:45<27:32:19, 2.89s/it]
|
990 |
1%|โ | 481/34750 [25:48<27:02:24, 2.84s/it]
|
991 |
1%|โ | 482/34750 [25:50<26:38:29, 2.80s/it]
|
992 |
1%|โ | 483/34750 [25:53<26:09:21, 2.75s/it]
|
993 |
1%|โ | 484/34750 [25:56<26:07:06, 2.74s/it]
|
994 |
1%|โ | 485/34750 [25:58<25:46:30, 2.71s/it]
|
995 |
1%|โ | 486/34750 [26:01<25:11:05, 2.65s/it]
|
996 |
1%|โ | 487/34750 [26:03<24:41:17, 2.59s/it]
|
997 |
1%|โ | 488/34750 [26:06<24:11:10, 2.54s/it]
|
998 |
1%|โ | 489/34750 [26:08<23:45:21, 2.50s/it]
|
999 |
1%|โ | 490/34750 [26:10<23:12:34, 2.44s/it]
|
1000 |
1%|โ | 491/34750 [26:13<22:40:29, 2.38s/it]
|
1001 |
1%|โ | 492/34750 [26:15<22:19:29, 2.35s/it]
|
1002 |
1%|โ | 493/34750 [26:17<22:03:05, 2.32s/it]
|
1003 |
1%|โ | 494/34750 [26:19<21:32:01, 2.26s/it]
|
1004 |
1%|โ | 495/34750 [26:21<21:00:30, 2.21s/it]
|
1005 |
1%|โ | 496/34750 [26:23<20:25:39, 2.15s/it]
|
1006 |
1%|โ | 497/34750 [26:25<19:55:06, 2.09s/it]
|
1007 |
1%|โ | 498/34750 [26:27<19:13:21, 2.02s/it]
|
1008 |
1%|โ | 499/34750 [26:29<18:38:20, 1.96s/it]
|
1009 |
1%|โ | 500/34750 [26:31<17:50:56, 1.88s/it]
|
1010 |
|
1011 |
1%|โ | 500/34750 [26:31<17:50:56, 1.88s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
|
1012 |
+
***** Running Evaluation *****
|
1013 |
+
Num examples = 456
|
1014 |
+
Batch size = 8
|
1015 |
+
{'loss': 47.2908, 'learning_rate': 3.675e-06, 'epoch': 0.14}
|
1016 |
+
{'loss': 33.9125, 'learning_rate': 7.425e-06, 'epoch': 0.29}
|
1017 |
+
{'loss': 26.6068, 'learning_rate': 1.1174999999999999e-05, 'epoch': 0.43}
|
1018 |
+
{'loss': 23.2775, 'learning_rate': 1.4925e-05, 'epoch': 0.57}
|
1019 |
+
{'loss': 19.7138, 'learning_rate': 1.8675e-05, 'epoch': 0.72}
|
1020 |
+
|
1021 |
+
|
1022 |
0%| | 0/57 [00:00<?, ?it/s][A
|
1023 |
+
|
1024 |
4%|โ | 2/57 [00:00<00:19, 2.82it/s][A
|
1025 |
+
|
1026 |
5%|โ | 3/57 [00:01<00:25, 2.12it/s][A
|
1027 |
+
|
1028 |
7%|โ | 4/57 [00:02<00:28, 1.83it/s][A
|
1029 |
+
|
1030 |
9%|โ | 5/57 [00:02<00:28, 1.85it/s][A
|
1031 |
+
|
1032 |
11%|โ | 6/57 [00:03<00:28, 1.78it/s][A
|
1033 |
+
|
1034 |
12%|โโ | 7/57 [00:03<00:28, 1.76it/s][A
|
1035 |
+
|
1036 |
14%|โโ | 8/57 [00:04<00:28, 1.72it/s][A
|
1037 |
+
|
1038 |
16%|โโ | 9/57 [00:04<00:27, 1.72it/s][A
|
1039 |
+
|
1040 |
18%|โโ | 10/57 [00:05<00:26, 1.75it/s][A
|
1041 |
+
|
1042 |
19%|โโ | 11/57 [00:06<00:27, 1.68it/s][A
|
1043 |
+
|
1044 |
21%|โโ | 12/57 [00:06<00:29, 1.53it/s][A
|
1045 |
+
|
1046 |
23%|โโโ | 13/57 [00:07<00:31, 1.42it/s][A
|
1047 |
+
|
1048 |
25%|โโโ | 14/57 [00:08<00:29, 1.44it/s][A
|
1049 |
+
|
1050 |
26%|โโโ | 15/57 [00:09<00:31, 1.34it/s][A
|
1051 |
+
|
1052 |
28%|โโโ | 16/57 [00:09<00:28, 1.43it/s][A
|
1053 |
+
|
1054 |
30%|โโโ | 17/57 [00:10<00:26, 1.50it/s][A
|
1055 |
+
|
1056 |
32%|โโโโ | 18/57 [00:11<00:24, 1.58it/s][A
|
1057 |
+
|
1058 |
33%|โโโโ | 19/57 [00:11<00:23, 1.65it/s][A
|
1059 |
+
|
1060 |
35%|โโโโ | 20/57 [00:12<00:22, 1.64it/s][A
|
1061 |
+
|
1062 |
37%|โโโโ | 21/57 [00:12<00:21, 1.65it/s][A
|
1063 |
+
|
1064 |
39%|โโโโ | 22/57 [00:13<00:23, 1.52it/s][A
|
1065 |
+
|
1066 |
40%|โโโโ | 23/57 [00:14<00:24, 1.40it/s][A
|
1067 |
+
|
1068 |
42%|โโโโโ | 24/57 [00:15<00:23, 1.42it/s][A
|
1069 |
+
|
1070 |
44%|โโโโโ | 25/57 [00:15<00:21, 1.47it/s][A
|
1071 |
+
|
1072 |
46%|โโโโโ | 26/57 [00:16<00:19, 1.55it/s][A
|
1073 |
+
|
1074 |
47%|โโโโโ | 27/57 [00:16<00:18, 1.65it/s][A
|
1075 |
+
|
1076 |
49%|โโโโโ | 28/57 [00:17<00:18, 1.59it/s][A
|
1077 |
+
|
1078 |
51%|โโโโโ | 29/57 [00:18<00:17, 1.57it/s][A
|
1079 |
+
|
1080 |
53%|โโโโโโ | 30/57 [00:18<00:15, 1.70it/s][A
|
1081 |
+
|
1082 |
54%|โโโโโโ | 31/57 [00:19<00:14, 1.83it/s][A
|
1083 |
+
|
1084 |
56%|โโโโโโ | 32/57 [00:19<00:14, 1.78it/s][A
|
1085 |
+
|
1086 |
58%|โโโโโโ | 33/57 [00:20<00:14, 1.66it/s][A
|
1087 |
+
|
1088 |
60%|โโโโโโ | 34/57 [00:20<00:14, 1.63it/s][A
|
1089 |
+
|
1090 |
61%|โโโโโโโ | 35/57 [00:21<00:14, 1.56it/s][A
|
1091 |
+
|
1092 |
63%|โโโโโโโ | 36/57 [00:22<00:13, 1.57it/s][A
|
1093 |
+
|
1094 |
65%|โโโโโโโ | 37/57 [00:22<00:13, 1.53it/s][A
|
1095 |
+
|
1096 |
67%|โโโโโโโ | 38/57 [00:23<00:12, 1.47it/s][A
|
1097 |
+
|
1098 |
68%|โโโโโโโ | 39/57 [00:24<00:12, 1.46it/s][A
|
1099 |
+
|
1100 |
70%|โโโโโโโ | 40/57 [00:25<00:11, 1.43it/s][A
|
1101 |
+
|
1102 |
72%|โโโโโโโโ | 41/57 [00:25<00:11, 1.37it/s][A
|
1103 |
+
|
1104 |
74%|โโโโโโโโ | 42/57 [00:26<00:11, 1.35it/s][A
|
1105 |
+
|
1106 |
75%|โโโโโโโโ | 43/57 [00:27<00:10, 1.39it/s][A
|
1107 |
+
|
1108 |
77%|โโโโโโโโ | 44/57 [00:28<00:09, 1.36it/s][A
|
1109 |
+
|
1110 |
79%|โโโโโโโโ | 45/57 [00:28<00:07, 1.54it/s][A
|
1111 |
+
|
1112 |
81%|โโโโโโโโ | 46/57 [00:29<00:06, 1.58it/s][A
|
1113 |
+
|
1114 |
82%|โโโโโโโโโ | 47/57 [00:29<00:06, 1.55it/s][A
|
1115 |
+
|
1116 |
84%|โโโโโโโโโ | 48/57 [00:30<00:05, 1.63it/s][A
|
1117 |
+
|
1118 |
86%|โโโโโโโโโ | 49/57 [00:31<00:04, 1.67it/s][A
|
1119 |
+
|
1120 |
88%|โโโโโโโโโ | 50/57 [00:31<00:04, 1.67it/s][A
|
1121 |
+
|
1122 |
89%|โโโโโโโโโ | 51/57 [00:32<00:03, 1.66it/s][A
|
1123 |
+
|
1124 |
91%|โโโโโโโโโ | 52/57 [00:32<00:02, 1.69it/s][A
|
1125 |
+
|
1126 |
93%|โโโโโโโโโโ| 53/57 [00:33<00:02, 1.80it/s][A
|
1127 |
+
|
1128 |
95%|โโโโโโโโโโ| 54/57 [00:33<00:01, 1.77it/s][A
|
1129 |
+
|
1130 |
96%|โโโโโโโโโโ| 55/57 [00:34<00:01, 1.61it/s][A
|
1131 |
+
|
1132 |
98%|โโโโโโโโโโ| 56/57 [00:35<00:00, 1.56it/s][A
|
1133 |
+
|
1134 |
|
1135 |
+
|
1136 |
|
1137 |
1%|โ | 500/34750 [27:12<17:50:56, 1.88s/it]
|
1138 |
+
|
1139 |
+
|
1140 |
[ASaving model checkpoint to ./checkpoint-500
|
1141 |
+
Configuration saved in ./checkpoint-500/config.json
|
1142 |
+
Model weights saved in ./checkpoint-500/pytorch_model.bin
|
1143 |
+
Configuration saved in ./checkpoint-500/preprocessor_config.json
|
1144 |
+
Configuration saved in ./preprocessor_config.json
|
preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"return_attention_mask": true,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95d95792c6081f64b83bc4a1b3c5f062d412822f9a3fa8e9f2bc12785dd1634d
|
3 |
+
size 1266872433
|
run.sh
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_speech_recognition_ctc.py \
|
2 |
+
--dataset_name="kresnik/zeroth_korean" \
|
3 |
+
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
|
4 |
+
--dataset_config_name="clean" \
|
5 |
+
--output_dir="./" \
|
6 |
+
--overwrite_output_dir \
|
7 |
+
--num_train_epochs="50" \
|
8 |
+
--per_device_train_batch_size="8" \
|
9 |
+
--per_device_eval_batch_size="8" \
|
10 |
+
--gradient_accumulation_steps="4" \
|
11 |
+
--learning_rate="7.5e-5" \
|
12 |
+
--warmup_steps="2000" \
|
13 |
+
--length_column_name="input_length" \
|
14 |
+
--evaluation_strategy="steps" \
|
15 |
+
--text_column_name="text" \
|
16 |
+
--chars_to_ignore , ? . ! \- \; \: \" โ % โ โ ๏ฟฝ โ โ โฆ โ \
|
17 |
+
--save_steps="500" \
|
18 |
+
--eval_steps="500" \
|
19 |
+
--logging_steps="100" \
|
20 |
+
--layerdrop="0.0" \
|
21 |
+
--activation_dropout="0.1" \
|
22 |
+
--save_total_limit="3" \
|
23 |
+
--freeze_feature_encoder \
|
24 |
+
--feat_proj_dropout="0.0" \
|
25 |
+
--mask_time_prob="0.75" \
|
26 |
+
--mask_time_length="10" \
|
27 |
+
--mask_feature_prob="0.25" \
|
28 |
+
--mask_feature_length="64" \
|
29 |
+
--gradient_checkpointing \
|
30 |
+
--use_auth_token \
|
31 |
+
--fp16 \
|
32 |
+
--group_by_length \
|
33 |
+
--do_train --do_eval \
|
34 |
+
--push_to_hub
|
run_speech_recognition_ctc.py
ADDED
@@ -0,0 +1,829 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a ๐ค Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
32 |
+
|
33 |
+
import transformers
|
34 |
+
from transformers import (
|
35 |
+
AutoConfig,
|
36 |
+
AutoFeatureExtractor,
|
37 |
+
AutoModelForCTC,
|
38 |
+
AutoProcessor,
|
39 |
+
AutoTokenizer,
|
40 |
+
HfArgumentParser,
|
41 |
+
Trainer,
|
42 |
+
TrainingArguments,
|
43 |
+
Wav2Vec2Processor,
|
44 |
+
set_seed,
|
45 |
+
)
|
46 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
47 |
+
from transformers.utils import check_min_version
|
48 |
+
from transformers.utils.versions import require_version
|
49 |
+
|
50 |
+
|
51 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
52 |
+
check_min_version("4.17.0.dev0")
|
53 |
+
|
54 |
+
require_version(
|
55 |
+
"datasets>=1.13.3",
|
56 |
+
"To fix: pip install -r examples/pytorch/text-classification/requirements.txt",
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
logger = logging.getLogger(__name__)
|
61 |
+
|
62 |
+
|
63 |
+
def list_field(default=None, metadata=None):
|
64 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
65 |
+
|
66 |
+
|
67 |
+
@dataclass
|
68 |
+
class ModelArguments:
|
69 |
+
"""
|
70 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
71 |
+
"""
|
72 |
+
|
73 |
+
model_name_or_path: str = field(
|
74 |
+
metadata={
|
75 |
+
"help": "Path to pretrained model or model identifier from huggingface.co/models"
|
76 |
+
}
|
77 |
+
)
|
78 |
+
tokenizer_name_or_path: Optional[str] = field(
|
79 |
+
default=None,
|
80 |
+
metadata={
|
81 |
+
"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"
|
82 |
+
},
|
83 |
+
)
|
84 |
+
cache_dir: Optional[str] = field(
|
85 |
+
default=None,
|
86 |
+
metadata={
|
87 |
+
"help": "Where do you want to store the pretrained models downloaded from huggingface.co"
|
88 |
+
},
|
89 |
+
)
|
90 |
+
freeze_feature_encoder: bool = field(
|
91 |
+
default=True,
|
92 |
+
metadata={"help": "Whether to freeze the feature encoder layers of the model."},
|
93 |
+
)
|
94 |
+
attention_dropout: float = field(
|
95 |
+
default=0.0,
|
96 |
+
metadata={"help": "The dropout ratio for the attention probabilities."},
|
97 |
+
)
|
98 |
+
activation_dropout: float = field(
|
99 |
+
default=0.0,
|
100 |
+
metadata={
|
101 |
+
"help": "The dropout ratio for activations inside the fully connected layer."
|
102 |
+
},
|
103 |
+
)
|
104 |
+
feat_proj_dropout: float = field(
|
105 |
+
default=0.0, metadata={"help": "The dropout ratio for the projected features."}
|
106 |
+
)
|
107 |
+
hidden_dropout: float = field(
|
108 |
+
default=0.0,
|
109 |
+
metadata={
|
110 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
111 |
+
},
|
112 |
+
)
|
113 |
+
final_dropout: float = field(
|
114 |
+
default=0.0,
|
115 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
116 |
+
)
|
117 |
+
mask_time_prob: float = field(
|
118 |
+
default=0.05,
|
119 |
+
metadata={
|
120 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
121 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
122 |
+
"vectors will be masked along the time axis."
|
123 |
+
},
|
124 |
+
)
|
125 |
+
mask_time_length: int = field(
|
126 |
+
default=10,
|
127 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
128 |
+
)
|
129 |
+
mask_feature_prob: float = field(
|
130 |
+
default=0.0,
|
131 |
+
metadata={
|
132 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
133 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
134 |
+
},
|
135 |
+
)
|
136 |
+
mask_feature_length: int = field(
|
137 |
+
default=10,
|
138 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
139 |
+
)
|
140 |
+
layerdrop: float = field(
|
141 |
+
default=0.0, metadata={"help": "The LayerDrop probability."}
|
142 |
+
)
|
143 |
+
ctc_loss_reduction: Optional[str] = field(
|
144 |
+
default="mean",
|
145 |
+
metadata={
|
146 |
+
"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."
|
147 |
+
},
|
148 |
+
)
|
149 |
+
|
150 |
+
|
151 |
+
@dataclass
|
152 |
+
class DataTrainingArguments:
|
153 |
+
"""
|
154 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
155 |
+
|
156 |
+
Using `HfArgumentParser` we can turn this class
|
157 |
+
into argparse arguments to be able to specify them on
|
158 |
+
the command line.
|
159 |
+
"""
|
160 |
+
|
161 |
+
dataset_name: str = field(
|
162 |
+
metadata={
|
163 |
+
"help": "The configuration name of the dataset to use (via the datasets library)."
|
164 |
+
}
|
165 |
+
)
|
166 |
+
dataset_config_name: str = field(
|
167 |
+
default=None,
|
168 |
+
metadata={
|
169 |
+
"help": "The configuration name of the dataset to use (via the datasets library)."
|
170 |
+
},
|
171 |
+
)
|
172 |
+
train_split_name: str = field(
|
173 |
+
default="train",
|
174 |
+
metadata={
|
175 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
176 |
+
},
|
177 |
+
)
|
178 |
+
eval_split_name: str = field(
|
179 |
+
default="test",
|
180 |
+
metadata={
|
181 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'test'"
|
182 |
+
},
|
183 |
+
)
|
184 |
+
audio_column_name: str = field(
|
185 |
+
default="audio",
|
186 |
+
metadata={
|
187 |
+
"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"
|
188 |
+
},
|
189 |
+
)
|
190 |
+
text_column_name: str = field(
|
191 |
+
default="text",
|
192 |
+
metadata={
|
193 |
+
"help": "The name of the dataset column containing the text data. Defaults to 'text'"
|
194 |
+
},
|
195 |
+
)
|
196 |
+
overwrite_cache: bool = field(
|
197 |
+
default=False,
|
198 |
+
metadata={"help": "Overwrite the cached preprocessed datasets or not."},
|
199 |
+
)
|
200 |
+
preprocessing_num_workers: Optional[int] = field(
|
201 |
+
default=None,
|
202 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
203 |
+
)
|
204 |
+
max_train_samples: Optional[int] = field(
|
205 |
+
default=None,
|
206 |
+
metadata={
|
207 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
208 |
+
"value if set."
|
209 |
+
},
|
210 |
+
)
|
211 |
+
max_eval_samples: Optional[int] = field(
|
212 |
+
default=None,
|
213 |
+
metadata={
|
214 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
215 |
+
"value if set."
|
216 |
+
},
|
217 |
+
)
|
218 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
219 |
+
default=None,
|
220 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
221 |
+
)
|
222 |
+
eval_metrics: List[str] = list_field(
|
223 |
+
default=["wer", "cer"],
|
224 |
+
metadata={
|
225 |
+
"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"
|
226 |
+
},
|
227 |
+
)
|
228 |
+
max_duration_in_seconds: float = field(
|
229 |
+
default=20.0,
|
230 |
+
metadata={
|
231 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
232 |
+
},
|
233 |
+
)
|
234 |
+
min_duration_in_seconds: float = field(
|
235 |
+
default=0.0,
|
236 |
+
metadata={
|
237 |
+
"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"
|
238 |
+
},
|
239 |
+
)
|
240 |
+
preprocessing_only: bool = field(
|
241 |
+
default=False,
|
242 |
+
metadata={
|
243 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
244 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
245 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
246 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
247 |
+
},
|
248 |
+
)
|
249 |
+
use_auth_token: bool = field(
|
250 |
+
default=False,
|
251 |
+
metadata={
|
252 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
253 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
254 |
+
},
|
255 |
+
)
|
256 |
+
unk_token: str = field(
|
257 |
+
default="[UNK]", metadata={"help": "The unk token for the tokenizer"},
|
258 |
+
)
|
259 |
+
pad_token: str = field(
|
260 |
+
default="[PAD]", metadata={"help": "The padding token for the tokenizer"},
|
261 |
+
)
|
262 |
+
word_delimiter_token: str = field(
|
263 |
+
default="|", metadata={"help": "The word delimiter token for the tokenizer"},
|
264 |
+
)
|
265 |
+
phoneme_language: Optional[str] = field(
|
266 |
+
default=None,
|
267 |
+
metadata={
|
268 |
+
"help": "The target language that should be used be"
|
269 |
+
" passed to the tokenizer for tokenization. Note that"
|
270 |
+
" this is only relevant if the model classifies the"
|
271 |
+
" input audio to a sequence of phoneme sequences."
|
272 |
+
},
|
273 |
+
)
|
274 |
+
|
275 |
+
|
276 |
+
@dataclass
|
277 |
+
class DataCollatorCTCWithPadding:
|
278 |
+
"""
|
279 |
+
Data collator that will dynamically pad the inputs received.
|
280 |
+
Args:
|
281 |
+
processor (:class:`~transformers.AutoProcessor`)
|
282 |
+
The processor used for proccessing the data.
|
283 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
284 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
285 |
+
among:
|
286 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
287 |
+
sequence if provided).
|
288 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
289 |
+
maximum acceptable input length for the model if that argument is not provided.
|
290 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
291 |
+
different lengths).
|
292 |
+
max_length (:obj:`int`, `optional`):
|
293 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
294 |
+
max_length_labels (:obj:`int`, `optional`):
|
295 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
296 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
297 |
+
If set will pad the sequence to a multiple of the provided value.
|
298 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
299 |
+
7.5 (Volta).
|
300 |
+
"""
|
301 |
+
|
302 |
+
processor: AutoProcessor
|
303 |
+
padding: Union[bool, str] = "longest"
|
304 |
+
pad_to_multiple_of: Optional[int] = None
|
305 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
306 |
+
|
307 |
+
def __call__(
|
308 |
+
self, features: List[Dict[str, Union[List[int], torch.Tensor]]]
|
309 |
+
) -> Dict[str, torch.Tensor]:
|
310 |
+
# split inputs and labels since they have to be of different lenghts and need
|
311 |
+
# different padding methods
|
312 |
+
input_features = [
|
313 |
+
{"input_values": feature["input_values"]} for feature in features
|
314 |
+
]
|
315 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
316 |
+
|
317 |
+
batch = self.processor.pad(
|
318 |
+
input_features,
|
319 |
+
padding=self.padding,
|
320 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
321 |
+
return_tensors="pt",
|
322 |
+
)
|
323 |
+
|
324 |
+
with self.processor.as_target_processor():
|
325 |
+
labels_batch = self.processor.pad(
|
326 |
+
label_features,
|
327 |
+
padding=self.padding,
|
328 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
329 |
+
return_tensors="pt",
|
330 |
+
)
|
331 |
+
|
332 |
+
# replace padding with -100 to ignore loss correctly
|
333 |
+
labels = labels_batch["input_ids"].masked_fill(
|
334 |
+
labels_batch.attention_mask.ne(1), -100
|
335 |
+
)
|
336 |
+
|
337 |
+
batch["labels"] = labels
|
338 |
+
|
339 |
+
return batch
|
340 |
+
|
341 |
+
|
342 |
+
def create_vocabulary_from_data(
|
343 |
+
datasets: DatasetDict,
|
344 |
+
word_delimiter_token: Optional[str] = None,
|
345 |
+
unk_token: Optional[str] = None,
|
346 |
+
pad_token: Optional[str] = None,
|
347 |
+
):
|
348 |
+
# Given training and test labels create vocabulary
|
349 |
+
def extract_all_chars(batch):
|
350 |
+
all_text = " ".join(batch["target_text"])
|
351 |
+
vocab = list(set(all_text))
|
352 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
353 |
+
|
354 |
+
vocabs = datasets.map(
|
355 |
+
extract_all_chars,
|
356 |
+
batched=True,
|
357 |
+
batch_size=-1,
|
358 |
+
keep_in_memory=True,
|
359 |
+
remove_columns=datasets["train"].column_names,
|
360 |
+
)
|
361 |
+
|
362 |
+
# take union of all unique characters in each dataset
|
363 |
+
vocab_set = functools.reduce(
|
364 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]),
|
365 |
+
vocabs.values(),
|
366 |
+
)
|
367 |
+
|
368 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
369 |
+
|
370 |
+
# replace white space with delimiter token
|
371 |
+
if word_delimiter_token is not None:
|
372 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
373 |
+
del vocab_dict[" "]
|
374 |
+
|
375 |
+
# add unk and pad token
|
376 |
+
if unk_token is not None:
|
377 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
378 |
+
|
379 |
+
if pad_token is not None:
|
380 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
381 |
+
|
382 |
+
return vocab_dict
|
383 |
+
|
384 |
+
|
385 |
+
def main():
|
386 |
+
# See all possible arguments in src/transformers/training_args.py
|
387 |
+
# or by passing the --help flag to this script.
|
388 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
389 |
+
|
390 |
+
parser = HfArgumentParser(
|
391 |
+
(ModelArguments, DataTrainingArguments, TrainingArguments)
|
392 |
+
)
|
393 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
394 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
395 |
+
# let's parse it to get our arguments.
|
396 |
+
model_args, data_args, training_args = parser.parse_json_file(
|
397 |
+
json_file=os.path.abspath(sys.argv[1])
|
398 |
+
)
|
399 |
+
else:
|
400 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
401 |
+
|
402 |
+
# Detecting last checkpoint.
|
403 |
+
last_checkpoint = None
|
404 |
+
if (
|
405 |
+
os.path.isdir(training_args.output_dir)
|
406 |
+
and training_args.do_train
|
407 |
+
and not training_args.overwrite_output_dir
|
408 |
+
):
|
409 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
410 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
411 |
+
raise ValueError(
|
412 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
413 |
+
"Use --overwrite_output_dir to overcome."
|
414 |
+
)
|
415 |
+
elif last_checkpoint is not None:
|
416 |
+
logger.info(
|
417 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
418 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
419 |
+
)
|
420 |
+
|
421 |
+
# Setup logging
|
422 |
+
logging.basicConfig(
|
423 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
424 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
425 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
426 |
+
)
|
427 |
+
logger.setLevel(
|
428 |
+
logging.INFO if is_main_process(training_args.local_rank) else logging.WARN
|
429 |
+
)
|
430 |
+
|
431 |
+
# Log on each process the small summary:
|
432 |
+
logger.warning(
|
433 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
434 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
435 |
+
)
|
436 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
437 |
+
if is_main_process(training_args.local_rank):
|
438 |
+
transformers.utils.logging.set_verbosity_info()
|
439 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
440 |
+
|
441 |
+
# Set seed before initializing model.
|
442 |
+
set_seed(training_args.seed)
|
443 |
+
|
444 |
+
# 1. First, let's load the dataset
|
445 |
+
raw_datasets = DatasetDict()
|
446 |
+
|
447 |
+
if training_args.do_train:
|
448 |
+
raw_datasets["train"] = load_dataset(
|
449 |
+
data_args.dataset_name,
|
450 |
+
data_args.dataset_config_name,
|
451 |
+
split=data_args.train_split_name,
|
452 |
+
use_auth_token=data_args.use_auth_token,
|
453 |
+
)
|
454 |
+
|
455 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
456 |
+
raise ValueError(
|
457 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
458 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
459 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
460 |
+
)
|
461 |
+
|
462 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
463 |
+
raise ValueError(
|
464 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
465 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
466 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
467 |
+
)
|
468 |
+
|
469 |
+
if data_args.max_train_samples is not None:
|
470 |
+
raw_datasets["train"] = raw_datasets["train"].select(
|
471 |
+
range(data_args.max_train_samples)
|
472 |
+
)
|
473 |
+
|
474 |
+
if training_args.do_eval:
|
475 |
+
raw_datasets["eval"] = load_dataset(
|
476 |
+
data_args.dataset_name,
|
477 |
+
data_args.dataset_config_name,
|
478 |
+
split=data_args.eval_split_name,
|
479 |
+
use_auth_token=data_args.use_auth_token,
|
480 |
+
)
|
481 |
+
|
482 |
+
if data_args.max_eval_samples is not None:
|
483 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(
|
484 |
+
range(data_args.max_eval_samples)
|
485 |
+
)
|
486 |
+
|
487 |
+
# 2. We remove some special characters from the datasets
|
488 |
+
# that make training complicated and do not help in transcribing the speech
|
489 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
490 |
+
# that could be easily picked up by the model
|
491 |
+
chars_to_ignore_regex = (
|
492 |
+
f'[{"".join(data_args.chars_to_ignore)}]'
|
493 |
+
if data_args.chars_to_ignore is not None
|
494 |
+
else None
|
495 |
+
)
|
496 |
+
text_column_name = data_args.text_column_name
|
497 |
+
|
498 |
+
def remove_special_characters(batch):
|
499 |
+
if chars_to_ignore_regex is not None:
|
500 |
+
batch["target_text"] = (
|
501 |
+
re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
502 |
+
)
|
503 |
+
else:
|
504 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
505 |
+
return batch
|
506 |
+
|
507 |
+
with training_args.main_process_first(
|
508 |
+
desc="dataset map special characters removal"
|
509 |
+
):
|
510 |
+
raw_datasets = raw_datasets.map(
|
511 |
+
remove_special_characters,
|
512 |
+
remove_columns=[text_column_name],
|
513 |
+
desc="remove special characters from datasets",
|
514 |
+
)
|
515 |
+
|
516 |
+
# save special tokens for tokenizer
|
517 |
+
word_delimiter_token = data_args.word_delimiter_token
|
518 |
+
unk_token = data_args.unk_token
|
519 |
+
pad_token = data_args.pad_token
|
520 |
+
|
521 |
+
# 3. Next, let's load the config as we might need it to create
|
522 |
+
# the tokenizer
|
523 |
+
# load config
|
524 |
+
config = AutoConfig.from_pretrained(
|
525 |
+
model_args.model_name_or_path,
|
526 |
+
cache_dir=model_args.cache_dir,
|
527 |
+
use_auth_token=data_args.use_auth_token,
|
528 |
+
)
|
529 |
+
|
530 |
+
# 4. Next, if no tokenizer file is defined,
|
531 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
532 |
+
# the training and evaluation datasets
|
533 |
+
# We need to make sure that only first rank saves vocabulary
|
534 |
+
# make sure all processes wait until vocab is created
|
535 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
536 |
+
tokenizer_kwargs = {}
|
537 |
+
if tokenizer_name_or_path is None:
|
538 |
+
# save vocab in training output dir
|
539 |
+
tokenizer_name_or_path = training_args.output_dir
|
540 |
+
|
541 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
542 |
+
|
543 |
+
with training_args.main_process_first():
|
544 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
545 |
+
os.remove(vocab_file)
|
546 |
+
|
547 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
548 |
+
if not os.path.isfile(vocab_file):
|
549 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
550 |
+
vocab_dict = create_vocabulary_from_data(
|
551 |
+
raw_datasets,
|
552 |
+
word_delimiter_token=word_delimiter_token,
|
553 |
+
unk_token=unk_token,
|
554 |
+
pad_token=pad_token,
|
555 |
+
)
|
556 |
+
|
557 |
+
# save vocab dict to be loaded into tokenizer
|
558 |
+
with open(vocab_file, "w") as file:
|
559 |
+
json.dump(vocab_dict, file)
|
560 |
+
|
561 |
+
# if tokenizer has just been created
|
562 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
563 |
+
tokenizer_kwargs = {
|
564 |
+
"config": config if config.tokenizer_class is not None else None,
|
565 |
+
"tokenizer_type": config.model_type
|
566 |
+
if config.tokenizer_class is None
|
567 |
+
else None,
|
568 |
+
"unk_token": unk_token,
|
569 |
+
"pad_token": pad_token,
|
570 |
+
"word_delimiter_token": word_delimiter_token,
|
571 |
+
}
|
572 |
+
|
573 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
574 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
575 |
+
# one local process can concurrently download model & vocab.
|
576 |
+
|
577 |
+
# load feature_extractor and tokenizer
|
578 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
579 |
+
tokenizer_name_or_path,
|
580 |
+
use_auth_token=data_args.use_auth_token,
|
581 |
+
**tokenizer_kwargs,
|
582 |
+
)
|
583 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
584 |
+
model_args.model_name_or_path,
|
585 |
+
cache_dir=model_args.cache_dir,
|
586 |
+
use_auth_token=data_args.use_auth_token,
|
587 |
+
)
|
588 |
+
|
589 |
+
# adapt config
|
590 |
+
config.update(
|
591 |
+
{
|
592 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
593 |
+
"attention_dropout": model_args.attention_dropout,
|
594 |
+
"hidden_dropout": model_args.hidden_dropout,
|
595 |
+
"final_dropout": model_args.final_dropout,
|
596 |
+
"mask_time_prob": model_args.mask_time_prob,
|
597 |
+
"mask_time_length": model_args.mask_time_length,
|
598 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
599 |
+
"mask_feature_length": model_args.mask_feature_length,
|
600 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
601 |
+
"layerdrop": model_args.layerdrop,
|
602 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
603 |
+
"pad_token_id": tokenizer.pad_token_id,
|
604 |
+
"vocab_size": len(tokenizer),
|
605 |
+
"activation_dropout": model_args.activation_dropout,
|
606 |
+
}
|
607 |
+
)
|
608 |
+
|
609 |
+
# create model
|
610 |
+
model = AutoModelForCTC.from_pretrained(
|
611 |
+
model_args.model_name_or_path,
|
612 |
+
cache_dir=model_args.cache_dir,
|
613 |
+
config=config,
|
614 |
+
use_auth_token=data_args.use_auth_token,
|
615 |
+
)
|
616 |
+
|
617 |
+
# freeze encoder
|
618 |
+
if model_args.freeze_feature_encoder:
|
619 |
+
model.freeze_feature_encoder()
|
620 |
+
|
621 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
622 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
623 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
624 |
+
# via the `feature_extractor`
|
625 |
+
|
626 |
+
# make sure that dataset decodes audio with correct sampling rate
|
627 |
+
dataset_sampling_rate = (
|
628 |
+
next(iter(raw_datasets.values()))
|
629 |
+
.features[data_args.audio_column_name]
|
630 |
+
.sampling_rate
|
631 |
+
)
|
632 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
633 |
+
raw_datasets = raw_datasets.cast_column(
|
634 |
+
data_args.audio_column_name,
|
635 |
+
datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate),
|
636 |
+
)
|
637 |
+
|
638 |
+
# derive max & min input length for sample rate & max duration
|
639 |
+
max_input_length = (
|
640 |
+
data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
641 |
+
)
|
642 |
+
min_input_length = (
|
643 |
+
data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
644 |
+
)
|
645 |
+
audio_column_name = data_args.audio_column_name
|
646 |
+
num_workers = data_args.preprocessing_num_workers
|
647 |
+
|
648 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
649 |
+
phoneme_language = data_args.phoneme_language
|
650 |
+
|
651 |
+
# Preprocessing the datasets.
|
652 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
653 |
+
def prepare_dataset(batch):
|
654 |
+
# load audio
|
655 |
+
sample = batch[audio_column_name]
|
656 |
+
|
657 |
+
inputs = feature_extractor(
|
658 |
+
sample["array"], sampling_rate=sample["sampling_rate"]
|
659 |
+
)
|
660 |
+
batch["input_values"] = inputs.input_values[0]
|
661 |
+
batch["input_length"] = len(batch["input_values"])
|
662 |
+
|
663 |
+
# encode targets
|
664 |
+
additional_kwargs = {}
|
665 |
+
if phoneme_language is not None:
|
666 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
667 |
+
|
668 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
669 |
+
return batch
|
670 |
+
|
671 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
672 |
+
vectorized_datasets = raw_datasets.map(
|
673 |
+
prepare_dataset,
|
674 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
675 |
+
num_proc=num_workers,
|
676 |
+
desc="preprocess datasets",
|
677 |
+
)
|
678 |
+
|
679 |
+
def is_audio_in_length_range(length):
|
680 |
+
return length > min_input_length and length < max_input_length
|
681 |
+
|
682 |
+
# filter data that is shorter than min_input_length
|
683 |
+
vectorized_datasets = vectorized_datasets.filter(
|
684 |
+
is_audio_in_length_range,
|
685 |
+
num_proc=num_workers,
|
686 |
+
input_columns=["input_length"],
|
687 |
+
)
|
688 |
+
|
689 |
+
# 7. Next, we can prepare the training.
|
690 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
691 |
+
# instantiate a data collator and the trainer
|
692 |
+
|
693 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
694 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
695 |
+
|
696 |
+
# for large datasets it is advised to run the preprocessing on a
|
697 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
698 |
+
# be a timeout when running the script in distributed mode.
|
699 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
700 |
+
# cached dataset
|
701 |
+
if data_args.preprocessing_only:
|
702 |
+
logger.info(
|
703 |
+
f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}"
|
704 |
+
)
|
705 |
+
return
|
706 |
+
|
707 |
+
def compute_metrics(pred):
|
708 |
+
pred_logits = pred.predictions
|
709 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
710 |
+
|
711 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
712 |
+
|
713 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
714 |
+
# we do not want to group tokens when computing the metrics
|
715 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
716 |
+
|
717 |
+
metrics = {
|
718 |
+
k: v.compute(predictions=pred_str, references=label_str)
|
719 |
+
for k, v in eval_metrics.items()
|
720 |
+
}
|
721 |
+
|
722 |
+
return metrics
|
723 |
+
|
724 |
+
# Now save everything to be able to create a single processor later
|
725 |
+
if is_main_process(training_args.local_rank):
|
726 |
+
# save feature extractor, tokenizer and config
|
727 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
728 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
729 |
+
config.save_pretrained(training_args.output_dir)
|
730 |
+
|
731 |
+
try:
|
732 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
733 |
+
except (OSError, KeyError):
|
734 |
+
warnings.warn(
|
735 |
+
"Loading a processor from a feature extractor config that does not"
|
736 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
737 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
738 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
739 |
+
FutureWarning,
|
740 |
+
)
|
741 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
742 |
+
|
743 |
+
# Instantiate custom data collator
|
744 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
745 |
+
|
746 |
+
# Initialize Trainer
|
747 |
+
trainer = Trainer(
|
748 |
+
model=model,
|
749 |
+
data_collator=data_collator,
|
750 |
+
args=training_args,
|
751 |
+
compute_metrics=compute_metrics,
|
752 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
753 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
754 |
+
tokenizer=feature_extractor,
|
755 |
+
)
|
756 |
+
|
757 |
+
# 8. Finally, we can start training
|
758 |
+
|
759 |
+
# Training
|
760 |
+
if training_args.do_train:
|
761 |
+
|
762 |
+
# use last checkpoint if exist
|
763 |
+
if last_checkpoint is not None:
|
764 |
+
checkpoint = last_checkpoint
|
765 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
766 |
+
checkpoint = model_args.model_name_or_path
|
767 |
+
else:
|
768 |
+
checkpoint = None
|
769 |
+
|
770 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
771 |
+
trainer.save_model()
|
772 |
+
|
773 |
+
metrics = train_result.metrics
|
774 |
+
max_train_samples = (
|
775 |
+
data_args.max_train_samples
|
776 |
+
if data_args.max_train_samples is not None
|
777 |
+
else len(vectorized_datasets["train"])
|
778 |
+
)
|
779 |
+
metrics["train_samples"] = min(
|
780 |
+
max_train_samples, len(vectorized_datasets["train"])
|
781 |
+
)
|
782 |
+
|
783 |
+
trainer.log_metrics("train", metrics)
|
784 |
+
trainer.save_metrics("train", metrics)
|
785 |
+
trainer.save_state()
|
786 |
+
|
787 |
+
# Evaluation
|
788 |
+
results = {}
|
789 |
+
if training_args.do_eval:
|
790 |
+
logger.info("*** Evaluate ***")
|
791 |
+
metrics = trainer.evaluate()
|
792 |
+
max_eval_samples = (
|
793 |
+
data_args.max_eval_samples
|
794 |
+
if data_args.max_eval_samples is not None
|
795 |
+
else len(vectorized_datasets["eval"])
|
796 |
+
)
|
797 |
+
metrics["eval_samples"] = min(
|
798 |
+
max_eval_samples, len(vectorized_datasets["eval"])
|
799 |
+
)
|
800 |
+
|
801 |
+
trainer.log_metrics("eval", metrics)
|
802 |
+
trainer.save_metrics("eval", metrics)
|
803 |
+
|
804 |
+
# Write model card and (optionally) push to hub
|
805 |
+
config_name = (
|
806 |
+
data_args.dataset_config_name
|
807 |
+
if data_args.dataset_config_name is not None
|
808 |
+
else "na"
|
809 |
+
)
|
810 |
+
kwargs = {
|
811 |
+
"finetuned_from": model_args.model_name_or_path,
|
812 |
+
"tasks": "speech-recognition",
|
813 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
814 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
815 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
816 |
+
}
|
817 |
+
if "common_voice" in data_args.dataset_name:
|
818 |
+
kwargs["language"] = config_name
|
819 |
+
|
820 |
+
if training_args.push_to_hub:
|
821 |
+
trainer.push_to_hub(**kwargs)
|
822 |
+
else:
|
823 |
+
trainer.create_model_card(**kwargs)
|
824 |
+
|
825 |
+
return results
|
826 |
+
|
827 |
+
|
828 |
+
if __name__ == "__main__":
|
829 |
+
main()
|
runs/Jan31_07-15-59_job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6/1643613501.488685/events.out.tfevents.1643613501.job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6.1151936.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28a6ab5fcdee80fd31c69dc157696d3063a1cc27099a2452f6695c51cba48628
|
3 |
+
size 4753
|
runs/Jan31_07-15-59_job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6/events.out.tfevents.1643613501.job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6.1151936.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2899aba1a5c0264df3c5c6326a68747e153f39041d06ca0ad3d1b42b63f3b01b
|
3 |
+
size 5833
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4af57085f0712099c06c191a8e3123d5fbba4119a615b1c3ec5ef78e066139b2
|
3 |
+
size 2991
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"๊ฐ": 1, "๊ฐ": 2, "๊ฐ": 3, "๊ฐ": 4, "๊ฐ": 5, "๊ฐ": 6, "๊ฐ": 7, "๊ฐ": 8, "๊ฐ": 9, "๊ฐ": 10, "๊ฐ": 11, "๊ฐ": 12, "๊ฐ": 13, "๊ฐ": 14, "๊ฐ": 15, "๊ฐ ": 16, "๊ฐค": 17, "๊ฐฏ": 18, "๊ฐฑ": 19, "๊ฑฐ": 20, "๊ฑฑ": 21, "๊ฑด": 22, "๊ฑท": 23, "๊ฑธ": 24, "๊ฒ": 25, "๊ฒ": 26, "๊ฒ": 27, "๊ฒ": 28, "๊ฒ": 29, "๊ฒ": 30, "๊ฒ": 31, "๊ฒ ": 32, "๊ฒจ": 33, "๊ฒฉ": 34, "๊ฒช": 35, "๊ฒฌ": 36, "๊ฒฐ": 37, "๊ฒธ": 38, "๊ฒน": 39, "๊ฒผ": 40, "๊ฒฝ": 41, "๊ณ": 42, "๊ณ": 43, "๊ณ ": 44, "๊ณก": 45, "๊ณค": 46, "๊ณง": 47, "๊ณจ": 48, "๊ณฐ": 49, "๊ณฑ": 50, "๊ณณ": 51, "๊ณต": 52, "๊ณถ": 53, "๊ณผ": 54, "๊ณฝ": 55, "๊ด": 56, "๊ด": 57, "๊ด": 58, "๊ด": 59, "๊ด": 60, "๊ดญ": 61, "๊ดด": 62, "๊ต": 63, "๊ต": 64, "๊ตฌ": 65, "๊ตญ": 66, "๊ตฐ": 67, "๊ตณ": 68, "๊ตด": 69, "๊ตต": 70, "๊ตถ": 71, "๊ตฝ": 72, "๊ตฟ": 73, "๊ถ": 74, "๊ถ": 75, "๊ถ": 76, "๊ถ": 77, "๊ถค": 78, "๊ท": 79, "๊ท": 80, "๊ท ": 81, "๊ทธ": 82, "๊ทน": 83, "๊ทผ": 84, "๊ธ": 85, "๊ธ": 86, "๊ธ": 87, "๊ธ": 88, "๊ธ": 89, "๊ธฐ": 90, "๊ธด": 91, "๊ธธ": 92, "๊น": 93, "๊น": 94, "๊น": 95, "๊น": 96, "๊น": 97, "๊น": 98, "๊น": 99, "๊น": 100, "๊นก": 101, "๊นฅ": 102, "๊นจ": 103, "๊นฌ": 104, "๊บผ": 105, "๊ป": 106, "๊ป": 107, "๊ป": 108, "๊ป": 109, "๊ปด": 110, "๊ผ": 111, "๊ผฌ": 112, "๊ผญ": 113, "๊ผด": 114, "๊ผผ": 115, "๊ผฝ": 116, "๊ฝ": 117, "๊ฝ": 118, "๊ฝ": 119, "๊ฝ": 120, "๊ฝฅ": 121, "๊พธ": 122, "๊พผ": 123, "๊ฟ": 124, "๊ฟ": 125, "๊ฟ": 126, "๊ฟ": 127, "๊ฟ": 128, "๊ฟจ": 129, "๊ฟฐ": 130, "๋": 131, "๋": 132, "๋": 133, "๋
": 134, "๋": 135, "๋": 136, "๋": 137, "๋": 138, "๋": 139, "๋": 140, "๋": 141, "๋ผ": 142, "๋ฝ": 143, "๋": 144, "๋": 145, "๋": 146, "๋": 147, "๋": 148, "๋ ": 149, "๋ก": 150, "๋จ": 151, "๋ฉ": 152, "๋ซ": 153, "๋ฌ": 154, "๋ญ": 155, "๋ฎ": 156, "๋ฏ": 157, "๋ณ": 158, "๋ด": 159, "๋ธ": 160, "๋ผ": 161, "๋": 162, "๋
": 163, "๋": 164, "๋": 165, "๋": 166, "๋": 167, "๋ฅ": 168, "๋": 169, "๋": 170, "๋": 171, "๋": 172, "๋": 173, "๋": 174, "๋": 175, "๋ฃ": 176, "๋ค": 177, "๋ฅ": 178, "๋จ": 179, "๋ท": 180, "๋
": 181, "๋
": 182, "๋
": 183, "๋
": 184, "๋
": 185, "๋
": 186, "๋
": 187, "๋
ธ": 188, "๋
น": 189, "๋
ผ": 190, "๋": 191, "๋": 192, "๋": 193, "๋": 194, "๋": 195, "๋จ": 196, "๋": 197, "๋จ": 198, "๋ฝ": 199, "๋": 200, "๋": 201, "๋": 202, "๋ ": 203, "๋": 204, "๋ด": 205, "๋": 206, "๋": 207, "๋": 208, "๋": 209, "๋ ": 210, "๋ฅ": 211, "๋ฆ": 212, "๋ช": 213, "๋ฌ": 214, "๋": 215, "๋": 216, "๋": 217, "๋": 218, "๋": 219, "๋": 220, "๋": 221, "๋": 222, "๋ค": 223, "๋ฅ": 224, "๋ฆ": 225, "๋จ": 226, "๋ซ": 227, "๋ฌ": 228, "๋ญ": 229, "๋ฎ": 230, "๋ณ": 231, "๋ด": 232, "๋ต": 233, "๋ท": 234, "๋น": 235, "๋ฟ": 236, "๋": 237, "๋": 238, "๋": 239, "๋": 240, "๋": 241, "๋": 242, "๋": 243, "๋": 244, "๋": 245, "๋ค": 246, "๋ง": 247, "๋ฉ": 248, "๋ซ": 249, "๋ฎ": 250, "๋ฐ": 251, "๋ด": 252, "๋ธ": 253, "๋
": 254, "๋": 255, "๋": 256, "๋
": 257, "๋": 258, "๋": 259, "๋": 260, "๋": 261, "๋": 262, "๋": 263, "๋": 264, "๋": 265, "๋ผ": 266, "๋": 267, "๋": 268, "๋": 269, "๋ ": 270, "๋จ": 271, "๋ฉ": 272, "๋": 273, "๋": 274, "๋": 275, "๋": 276, "๋ ": 277, "๋ฅ": 278, "๋ฌ": 279, "๋": 280, "๋ค": 281, "๋ท": 282, "๋": 283, "๋": 284, "๋": 285, "๋ ": 286, "๋ฃ": 287, "๋ค": 288, "๋ฌ": 289, "๋ญ": 290, "๋ฏ": 291, "๋ฑ": 292, "๋": 293, "๋": 294, "๋": 295, "๋ฅ": 296, "๋จ": 297, "๋ฉ": 298, "๋ช": 299, "๋ฐ": 300, "๋ฑ": 301, "๋ด": 302, "๋ธ": 303, "๋": 304, "๋": 305, "๋
": 306, "๋": 307, "๋": 308, "๋ ": 309, "๋ก": 310, "๋ ": 311, "๋ก": 312, "๋ค": 313, "๋จ": 314, "๋ด": 315, "๋ป": 316, "๋ผ": 317, "๋": 318, "๋": 319, "๋": 320, "๋ฅ": 321, "๋": 322, "๋": 323, "๋ซ": 324, "๋ฐ": 325, "๋ด": 326, "๋จ": 327, "๋ฏ": 328, "๋ธ": 329, "๋ป": 330, "๋": 331, "๋": 332, "๋ ": 333, "๋ค": 334, "๋จ": 335, "๋ต": 336, "๋ผ": 337, "๋ฝ": 338, "๋": 339, "๋": 340, "๋": 341, "๋": 342, "๋": 343, "๋": 344, "๋": 345, "๋": 346, "๋": 347, "๋จ": 348, "๋ซ": 349, "๋ฌ": 350, "๋ญ": 351, "๋ด": 352, "๋ต": 353, "๋": 354, "๋ฌ": 355, "๋ญ": 356, "๋ฐ": 357, "๋ด": 358, "๋ผ": 359, "๋ฝ": 360, "๋ ": 361, "๋ ": 362, "๋ ": 363, "๋ ": 364, "๋ ": 365, "๋ ": 366, "๋ ": 367, "๋ ": 368, "๋ ค": 369, "๋ ฅ": 370, "๋ จ": 371, "๋ ฌ": 372, "๋ ด": 373, "๋ ต": 374, "๋ ท": 375, "๋ ธ": 376, "๋ น": 377, "๋ก": 378, "๋ก": 379, "๋ก": 380, "๋ก ": 381, "๋กค": 382, "๋กฌ": 383, "๋กญ": 384, "๋กฏ": 385, "๋กฑ": 386, "๋ขฐ": 387, "๋ฃ": 388, "๋ฃก": 389, "๋ฃจ": 390, "๋ฃฌ": 391, "๋ฃฐ": 392, "๋ฃธ": 393, "๋ฃน": 394, "๋ค": 395, "๋ค": 396, "๋คผ": 397, "๋ฅ": 398, "๋ฅ": 399, "๋ฅ": 400, "๋ฅ ": 401, "๋ฅญ": 402, "๋ฅด": 403, "๋ฅต": 404, "๋ฅธ": 405, "๋ฅผ": 406, "๋ฆ": 407, "๋ฆ
": 408, "๋ฆ": 409, "๋ฆ": 410, "๋ฆ": 411, "๋ฆฌ": 412, "๋ฆญ": 413, "๋ฆฐ": 414, "๋ฆด": 415, "๋ฆผ": 416, "๋ฆฝ": 417, "๋ฆฟ": 418, "๋ง": 419, "๋ง": 420, "๋ง": 421, "๋ง": 422, "๋ง": 423, "๋ง": 424, "๋ง": 425, "๋ง": 426, "๋ง": 427, "๋ง": 428, "๋ง": 429, "๋ง": 430, "๋ง": 431, "๋งก": 432, "๋งค": 433, "๋งฅ": 434, "๋งจ": 435, "๋งน": 436, "๋งบ": 437, "๋จธ": 438, "๋จน": 439, "๋จผ": 440, "๋ฉ": 441, "๋ฉ": 442, "๋ฉ": 443, "๋ฉ": 444, "๋ฉ": 445, "๋ฉ": 446, "๋ฉ": 447, "๋ฉ": 448, "๋ฉง": 449, "๋ฉฐ": 450, "๋ฉด": 451, "๋ฉธ": 452, "๋ช
": 453, "๋ช": 454, "๋ชจ": 455, "๋ชฉ": 456, "๋ชซ": 457, "๋ชฌ": 458, "๋ชฐ": 459, "๋ชธ": 460, "๋ชป": 461, "๋ชฝ": 462, "๋ฌ": 463, "๋ฌด": 464, "๋ฌต": 465, "๋ฌถ": 466, "๋ฌธ": 467, "๋ฌป": 468, "๋ฌผ": 469, "๋ญ": 470, "๋ญ": 471, "๋ญ": 472, "๋ญ": 473, "๋ญ": 474, "๋ฎค": 475, "๋ฎฌ": 476, "๋ฏ": 477, "๋ฏ": 478, "๋ฏธ": 479, "๋ฏน": 480, "๋ฏผ": 481, "๋ฏฟ": 482, "๋ฐ": 483, "๋ฐ": 484, "๋ฐ": 485, "๋ฐ": 486, "๋ฐ": 487, "๋ฐ": 488, "๋ฐ": 489, "๋ฐ": 490, "๋ฐ": 491, "๋ฐ": 492, "๋ฐ": 493, "๋ฐ": 494, "๋ฐ": 495, "๋ฐค": 496, "๋ฐฅ": 497, "๋ฐฉ": 498, "๋ฐญ": 499, "๋ฐฐ": 500, "๋ฐฑ": 501, "๋ฐด": 502, "๋ฑ": 503, "๋ฑ": 504, "๋ฑ
": 505, "๋ฒ": 506, "๋ฒ
": 507, "๋ฒ": 508, "๋ฒ": 509, "๋ฒ": 510, "๋ฒ": 511, "๋ฒ": 512, "๋ฒ": 513, "๋ฒ ": 514, "๋ฒค": 515, "๋ฒจ": 516, "๋ฒณ": 517, "๋ฒผ": 518, "๋ฒฝ": 519, "๋ณ": 520, "๋ณ": 521, "๋ณ": 522, "๋ณ": 523, "๋ณ": 524, "๋ณ": 525, "๋ณด": 526, "๋ณต": 527, "๋ณถ": 528, "๋ณธ": 529, "๋ณผ": 530, "๋ด": 531, "๋ด
": 532, "๋ด": 533, "๋ด": 534, "๋ด": 535, "๋ดค": 536, "๋ต": 537, "๋ต": 538, "๋ถ": 539, "๋ถ": 540, "๋ถ": 541, "๋ถ": 542, "๋ถ": 543, "๋ถ": 544, "๋ถ": 545, "๋ถ": 546, "๋ถ": 547, "๋ท": 548, "๋ทฐ": 549, "๋ธ": 550, "๋ธ": 551, "๋ธ": 552, "๋น": 553, "๋น
": 554, "๋น": 555, "๋น": 556, "๋น": 557, "๋น": 558, "๋น": 559, "๋น": 560, "๋น ": 561, "๋นจ": 562, "๋นต": 563, "๋นผ": 564, "๋บ": 565, "๋บ": 566, "๋บ": 567, "๋บ": 568, "๋ป": 569, "๋ป": 570, "๋ป": 571, "๋ป": 572, "๋ป": 573, "๋ผ": 574, "๋ฝ": 575, "๋ฝ": 576, "๋ฝ": 577, "๋ฟ": 578, "๋ฟ": 579, "๋ฟ": 580, "์": 581, "์": 582, "์ฉ": 583, "์": 584, "์ฌ": 585, "์ญ": 586, "์ฐ": 587, "์ด": 588, "์ถ": 589, "์ผ": 590, "์ฝ": 591, "์ฟ": 592, "์": 593, "์": 594, "์": 595, "์": 596, "์": 597, "์": 598, "์": 599, "์": 600, "์ค": 601, "์ฌ": 602, "์ต": 603, "์ท": 604, "์": 605, "์": 606, "์": 607, "์ ": 608, "์ฃ": 609, "์ค": 610, "์ฌ": 611, "์ญ": 612, "์ฏ": 613, "์ฐ": 614, "์ฑ": 615, "์ธ": 616, "์น": 617, "์ผ": 618, "์
": 619, "์
": 620, "์
": 621, "์
": 622, "์
": 623, "์
": 624, "์
": 625, "์
จ": 626, "์
ฐ": 627, "์": 628, "์": 629, "์": 630, "์": 631, "์": 632, "์": 633, "์ก": 634, "์ฅ": 635, "์": 636, "์ ": 637, "์ค": 638, "์ผ": 639, "์": 640, "์": 641, "์": 642, "์": 643, "์ ": 644, "์จ": 645, "์ญ": 646, "์ฒ": 647, "์ฌ": 648, "์ฐ": 649, "์ผ": 650, "์ฝ": 651, "์": 652, "์": 653, "์ค": 654, "์จ": 655, "์ฌ": 656, "์ด": 657, "์ต": 658, "์ท": 659, "์น": 660, "์": 661, "์": 662, "์ ": 663, "์ค": 664, "์ซ": 665, "์ฌ": 666, "์ญ": 667, "์ฑ": 668, "์ถ": 669, "์ธ": 670, "์น": 671, "์ผ": 672, "์": 673, "์": 674, "์": 675, "์": 676, "์": 677, "์จ": 678, "์ฉ": 679, "์ฐ": 680, "์ผ": 681, "์": 682, "์": 683, "์": 684, "์ ": 685, "์ค": 686, "์ฐ": 687, "์ด": 688, "์ธ": 689, "์": 690, "์": 691, "์": 692, "์จ": 693, "์ฉ": 694, "์ฌ": 695, "์ธ": 696, "์ป": 697, "์": 698, "์
": 699, "์": 700, "์": 701, "์": 702, "์": 703, "์": 704, "์": 705, "์": 706, "์": 707, "์": 708, "์": 709, "์": 710, "์ ": 711, "์ก": 712, "์ค": 713, "์จ": 714, "์ฑ": 715, "์ต": 716, "์ผ": 717, "์ฝ": 718, "์": 719, "์": 720, "์": 721, "์": 722, "์ด": 723, "์ต": 724, "์ธ": 725, "์น": 726, "์ป": 727, "์ผ": 728, "์ฝ": 729, "์": 730, "์
": 731, "์": 732, "์": 733, "์": 734, "์": 735, "์": 736, "์": 737, "์": 738, "์": 739, "์": 740, "์ ": 741, "์ก": 742, "์ฃ": 743, "์ฌ": 744, "์ญ": 745, "์ฐ": 746, "์ด": 747, "์ท": 748, "์ผ": 749, "์ฝ": 750, "์ฟ": 751, "์": 752, "์": 753, "์": 754, "์": 755, "์": 756, "์ค": 757, "์ฅ": 758, "์จ": 759, "์ฌ": 760, "์ฎ": 761, "์ณ": 762, "์ด": 763, "์ต": 764, "์ท": 765, "์น": 766, "์": 767, "์": 768, "์": 769, "์": 770, "์": 771, "์": 772, "์ธ": 773, "์ผ": 774, "์": 775, "์": 776, "์ฉ": 777, "์ฐ": 778, "์ฑ": 779, "์ด": 780, "์ธ": 781, "์": 782, "์": 783, "์": 784, "์
": 785, "์": 786, "์": 787, "์": 788, "์ ": 789, "์จ": 790, "์ฌ": 791, "์น": 792, "์": 793, "์": 794, "์": 795, "์": 796, "์": 797, "์ ": 798, "์ก": 799, "์ค": 800, "์จ": 801, "์ต": 802, "์ผ": 803, "์": 804, "์": 805, "์": 806, "์": 807, "์": 808, "์": 809, "์ด": 810, "์ต": 811, "์ธ": 812, "์ผ": 813, "์ฝ": 814, "์": 815, "์": 816, "์
": 817, "์": 818, "์": 819, "์": 820, "์": 821, "์": 822, "์": 823, "์": 824, "์": 825, "์": 826, "์": 827, "์ ": 828, "์ก": 829, "์ฃ": 830, "์ฅ": 831, "์ฆ": 832, "์ฌ": 833, "์ญ": 834, "์ฐ": 835, "์ฝ": 836, "์": 837, "์ ": 838, "์ ": 839, "์ ": 840, "์ ": 841, "์ ": 842, "์ ": 843, "์ ": 844, "์ ": 845, "์ ": 846, "์ ": 847, "์ ": 848, "์ ": 849, "์ ": 850, "์ ": 851, "์ ค": 852, "์ ธ": 853, "์ ผ": 854, "์ก": 855, "์กฐ": 856, "์กฑ": 857, "์กด": 858, "์กธ": 859, "์ข": 860, "์ข": 861, "์ข
": 862, "์ข": 863, "์ข": 864, "์ฃ": 865, "์ฃ ": 866, "์ฃผ": 867, "์ฃฝ": 868, "์ค": 869, "์ค": 870, "์ค": 871, "์ค": 872, "์ค": 873, "์คฌ": 874, "์ฅ": 875, "์ฅ": 876, "์ฅ": 877, "์ฅฌ": 878, "์ฆ": 879, "์ฆ": 880, "์ฆ": 881, "์ฆ": 882, "์ฆ": 883, "์ฆ": 884, "์ง": 885, "์ง": 886, "์ง": 887, "์ง": 888, "์ง": 889, "์ง": 890, "์ง": 891, "์ง": 892, "์ง": 893, "์ง": 894, "์ง": 895, "์ง": 896, "์ง": 897, "์ง": 898, "์งง": 899, "์งฌ": 900, "์งธ": 901, "์จ": 902, "์ฉ": 903, "์ฉ": 904, "์ฉ": 905, "์ฉ": 906, "์ชผ": 907, "์ชฝ": 908, "์ซ": 909, "์ซ": 910, "์ญ": 911, "์ฏค": 912, "์ฐ": 913, "์ฐ": 914, "์ฐ": 915, "์ฐข": 916, "์ฐง": 917, "์ฐจ": 918, "์ฐฉ": 919, "์ฐฌ": 920, "์ฐฎ": 921, "์ฐฐ": 922, "์ฐธ": 923, "์ฐป": 924, "์ฐฝ": 925, "์ฐพ": 926, "์ฑ": 927, "์ฑ
": 928, "์ฑ": 929, "์ฑ": 930, "์ฑ": 931, "์ฑ ": 932, "์ฒ": 933, "์ฒ": 934, "์ฒ": 935, "์ฒ ": 936, "์ฒจ": 937, "์ฒฉ": 938, "์ฒซ": 939, "์ฒญ": 940, "์ฒด": 941, "์ฒธ": 942, "์ฒผ": 943, "์ณ": 944, "์ณ": 945, "์ณค": 946, "์ด": 947, "์ด": 948, "์ด": 949, "์ด": 950, "์ด": 951, "์ด": 952, "์ดจ": 953, "์ดฌ": 954, "์ต": 955, "์ถ": 956, "์ถ": 957, "์ถ": 958, "์ถ": 959, "์ถค": 960, "์ถฉ": 961, "์ถฐ": 962, "์ทจ": 963, "์ธ ": 964, "์ธก": 965, "์ธฐ": 966, "์ธต": 967, "์น": 968, "์น": 969, "์น": 970, "์น ": 971, "์นจ": 972, "์นฉ": 973, "์นซ": 974, "์นญ": 975, "์นด": 976, "์นธ": 977, "์นผ": 978, "์บ": 979, "์บ": 980, "์บ": 981, "์บ": 982, "์บ ": 983, "์ปค": 984, "์ปฅ": 985, "์ปจ": 986, "์ปซ": 987, "์ปด": 988, "์ปต": 989, "์ปท": 990, "์ปธ": 991, "์ผ": 992, "์ผ": 993, "์ผ": 994, "์ผ": 995, "์ผ": 996, "์ผ": 997, "์ผฐ": 998, "์ฝ": 999, "์ฝ": 1000, "์ฝ": 1001, "์ฝค": 1002, "์ฝฅ": 1003, "์ฝง": 1004, "์ฝฉ": 1005, "์พ": 1006, "์ฟ": 1007, "์ฟ ": 1008, "์ฟก": 1009, "์ฟจ": 1010, "์ฟผ": 1011, "ํด": 1012, "ํ": 1013, "ํฌ": 1014, "ํฐ": 1015, "ํด": 1016, "ํผ": 1017, "ํค": 1018, "ํฅ": 1019, "ํจ": 1020, "ํฌ": 1021, "ํท": 1022, "ํน": 1023, "ํ": 1024, "ํ": 1025, "ํ": 1026, "ํ": 1027, "ํ": 1028, "ํ": 1029, "ํ": 1030, "ํ": 1031, "ํ": 1032, "ํ": 1033, "ํ ": 1034, "ํฌ": 1035, "ํฑ": 1036, "ํฐ": 1037, "ํฑ": 1038, "ํด": 1039, "ํธ": 1040, "ํ
": 1041, "ํ
": 1042, "ํ
": 1043, "ํ
": 1044, "ํ
": 1045, "ํ
": 1046, "ํ
": 1047, "ํ
ผ": 1048, "ํ ": 1049, "ํก": 1050, "ํค": 1051, "ํจ": 1052, "ํฐ": 1053, "ํต": 1054, "ํด": 1055, "ํฌ": 1056, "ํด": 1057, "ํผ": 1058, "ํ": 1059, "ํ": 1060, "ํ": 1061, "ํฌ": 1062, "ํธ": 1063, "ํน": 1064, "ํผ": 1065, "ํฟ": 1066, "ํ": 1067, "ํ": 1068, "ํฐ": 1069, "ํฑ": 1070, "ํด": 1071, "ํธ": 1072, "ํ": 1073, "ํ
": 1074, "ํ": 1075, "ํ": 1076, "ํ": 1077, "ํ": 1078, "ํ": 1079, "ํ": 1080, "ํก": 1081, "ํจ": 1082, "ํฉ": 1083, "ํฌ": 1084, "ํฐ": 1085, "ํป": 1086, "ํฝ": 1087, "ํผ": 1088, "ํ": 1089, "ํ": 1090, "ํ": 1091, "ํ": 1092, "ํ": 1093, "ํ ": 1094, "ํซ": 1095, "ํด": 1096, "ํธ": 1097, "ํผ": 1098, "ํ": 1099, "ํ": 1100, "ํ": 1101, "ํ": 1102, "ํฌ": 1103, "ํญ": 1104, "ํฐ": 1105, "ํด": 1106, "ํผ": 1107, "ํ": 1108, "ํธ": 1109, "ํน": 1110, "ํผ": 1111, "ํ": 1112, "ํ": 1113, "ํ": 1114, "ํ": 1115, "ํจ": 1116, "ํฐ": 1117, "ํ": 1118, "ํ": 1119, "ํ": 1120, "ํ": 1121, "ํผ": 1122, "ํฝ": 1123, "ํ": 1124, "ํ": 1125, "ํ": 1126, "ํ": 1127, "ํ": 1128, "ํ": 1129, "ํ": 1130, "ํ ": 1131, "ํจ": 1132, "ํฉ": 1133, "ํซ": 1134, "ํญ": 1135, "ํด": 1136, "ํต": 1137, "ํธ": 1138, "ํ": 1139, "ํ": 1140, "ํ": 1141, "ํฅ": 1142, "ํ": 1143, "ํ": 1144, "ํ": 1145, "ํ": 1146, "ํ": 1147, "ํค": 1148, "ํจ": 1149, "ํฌ": 1150, "ํด": 1151, "ํท": 1152, "ํ": 1153, "ํ": 1154, "ํ": 1155, "ํ": 1156, "ํ": 1157, "ํ": 1158, "ํ": 1159, "ํ": 1160, "ํ": 1161, "ํธ": 1162, "ํน": 1163, "ํผ": 1164, "ํ": 1165, "ํ": 1166, "ํ": 1167, "ํ": 1168, "ํ": 1169, "ํ": 1170, "ํ": 1171, "ํ": 1172, "ํฉ": 1173, "ํ": 1174, "ํ": 1175, "ํก": 1176, "ํจ": 1177, "ํ": 1178, "ํ": 1179, "ํ": 1180, "ํค": 1181, "ํจ": 1182, "ํผ": 1183, "ํ": 1184, "ํฉ": 1185, "ํด": 1186, "ํ": 1187, "ํ": 1188, "ํ": 1189, "ํ": 1190, "ํ": 1191, "ํ": 1192, "ํ ": 1193, "ํก": 1194, "ํฅ": 1195, "ํฉ": 1196, "ํฌ": 1197, "ํฐ": 1198, "ํ": 1199, "ํ": 1200, "ํ": 1201, "ํ": 1202, "|": 0, "[UNK]": 1203, "[PAD]": 1204}
|