--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-base-twitter-indonesia-sarcastic results: [] --- # xlm-roberta-base-twitter-indonesia-sarcastic This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4359 - Accuracy: 0.8513 - F1: 0.7386 - Precision: 0.6570 - Recall: 0.8433 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5641 | 1.0 | 59 | 0.5260 | 0.75 | 0.0 | 0.0 | 0.0 | | 0.5317 | 2.0 | 118 | 0.5030 | 0.75 | 0.0 | 0.0 | 0.0 | | 0.4995 | 3.0 | 177 | 0.4656 | 0.75 | 0.0 | 0.0 | 0.0 | | 0.4599 | 4.0 | 236 | 0.4503 | 0.7687 | 0.6026 | 0.5281 | 0.7015 | | 0.4082 | 5.0 | 295 | 0.3785 | 0.8470 | 0.6435 | 0.7708 | 0.5522 | | 0.3274 | 6.0 | 354 | 0.3605 | 0.8619 | 0.6992 | 0.7679 | 0.6418 | | 0.2621 | 7.0 | 413 | 0.3765 | 0.8619 | 0.6838 | 0.8 | 0.5970 | | 0.2332 | 8.0 | 472 | 0.3408 | 0.8769 | 0.7591 | 0.7429 | 0.7761 | | 0.1579 | 9.0 | 531 | 0.4382 | 0.8731 | 0.7213 | 0.8 | 0.6567 | | 0.1467 | 10.0 | 590 | 0.3855 | 0.8806 | 0.7895 | 0.7059 | 0.8955 | | 0.098 | 11.0 | 649 | 0.4693 | 0.8806 | 0.7500 | 0.7869 | 0.7164 | | 0.0929 | 12.0 | 708 | 0.6206 | 0.8806 | 0.7333 | 0.8302 | 0.6567 | | 0.0555 | 13.0 | 767 | 0.7134 | 0.8843 | 0.7634 | 0.7812 | 0.7463 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0